Директор мбоу сош №22 И. Е. Гаврилова


Программы отдельных учебных предметов, курсов



страница5/32
Дата22.11.2016
Размер1.81 Mb.
Просмотров5948
Скачиваний0
ТипПротокол
1   2   3   4   5   6   7   8   9   ...   32

2.2. Программы отдельных учебных предметов, курсов


Программы по учебным предметам, реализуемым в школе, обеспечивают достижение планируемых результатов освоения ООП основной школы, составляют единый учебно-методический комплект (УМК)

УМК базируется на новых достижениях педагогической теории и практики, относящихся, прежде всего к широкому пространству гуманной педагогики, имеющей глубочайшие корни в классическом педагогическом наследии. Комплект опирается на новые теоретические концепции, идеи центробежной парадигмы педагогической мысли, что обеспечивает новое видение школы в целом и каждого учебного предмета в отдельности.




  1. АЛГЕБРА. ГЕОМЕТРИЯ.

Пояснительная записка

Рабочая программа по предмету «Алгебра и начала математического анализа» МБОУ СОШ№ 22 составлена для учащихся 10-11 атомклассов на основе:



  • закона Российской Федерации «Об образовании»;

  • требований федерального государственного образовательного стандарта основного общего образования;

  • примерной основной образовательной программы основного общего образования;

  • примерной программы по учебным предметам «Алгебра и начала математического анализа», «Геометрия».

Математика – один из важнейших предметов учебного плана школы.

Основная задача обучения математике в образовательном учреждении заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, определённых требованиями Государственного стандарта по математике, необходимых в повседневной жизни и трудовой деятельности выпускника, достаточных для изучения смежных дисциплин и продолжения образования.

Наряду с решениями основной задачи, изучение математики, предусматривает формирование у учащихся устойчивого интереса к предмету, выявление и развитие их математических способностей, ориентацию на профессии, существенным образом связанные с математикой, подготовку к обучению в ВУЗе.

Предлагаемая Программа создана на основе программы для общеобразовательных школ Министерства образования Российской Федерации 2007г. по алгебре под ред. М. Ю. Колягина.

В этот объём знаний, умений и навыков, которыми должны овладеть учащиеся атомкласса, безусловно, входят те знания, умения, навыки, обязательное приобретение которых предусмотрено требованиями программы, однако, предполагается иное, более высокое качество их сформированности.

Учащиеся должны приобрести умения решать задачи более высокой по сравнению с обязательным уровнем сложности, точно и грамотно формулировать изученные теоретические положения и излагать собственные рассуждения при решении задач, правильно пользоваться математической терминологией и символикой, применять рациональные приёмы вычислений и тождественных преобразований, использовать наиболее употребительные эвристические приёмы и т. д. Систематическое изложение курса позволяет продолжить работу по формированию у учащихся представлений о строении математической теории. Оно обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе.

Целью изучения алгебры в 10-11 классах является развитие алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач, возникающих в теории и на практике, в том числе социально – экономические и физические задачи, задачи на нахождение наибольшего и наименьшего значений, на нахождение скорости и ускорения. В ходе изучения курса учащиеся расширяют свои знания в области тригонометрии, что позволяет расширить объем алгебраических, геометрических и физических задач. Курс направлен на развитие графически – иллюстративного метода, помогающего при решении уравнений и неравенств.

Каждому человеку в своей жизни приходится использовать знания, полученные в школьном курсе в практической деятельности, выполнять различные вычисления, использовать вычислительную технику, читать информацию, представленную в виде схем, таблиц, диаграмм, графиков, составлять сложные алгоритмы. Данный курс алгебры дает учащимся возможность получить необходимые знания и умения.



Цель курса:

Способствовать формированию математической культуры, формированию интеллектуально грамотной личности, способной самостоятельно получать знания, осмысленно выбирать профессию и специальность в соответствии с заявленным профилем образования в условиях модернизации системы образования РФ.

Изучение алгебры в 10-11 классах на профильном уровне направлено на достижение следующих целей:


  • формирование представлений об идеях и методах математики; о математике как

универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

В ходе изучения курса математики учащиеся должны овладеть следующими ключевыми компетенциями:

  • познавательная (познавать окружающий мир с помощью наблюдения, измерения, опыта, моделирования; сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, критериям; творчески решать учебные и практические задачи: уметь мотивированно отказываться от образца, искать оригинальные решения).

  • информационно-коммуникативная (умение вступать в речевое общение, участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение; составление плана, тезисов, конспекта; приведение примеров, подбор аргументов, формулирование выводов; отражение в устной или письменной форме результатов своей деятельности).

  • рефлексивная (самостоятельная организация учебной деятельности; владение навыками контроля и оценки своей деятельности, поиск и устранение причин возникших трудностей; оценивание своих учебных достижений; владение умениями совместной деятельности: согласование и координация деятельности с другими ее участниками).

Место курса геометрии, алгебры и начал математического анализа в учебном плане

Базисный учебный план на изучение математики на профильном уровне в старшей школе отводит 6 часов в неделю в течение каждого года обучения, всего 314 часов: 210 часов в 10 классе и 204 часа в 11 классе.



Предметы «Алгебра и начала математического анализа» и «Геометрия» изучаются параллельно: 4 часа в неделю – алгебра и 2 часа в неделю – геометрия.


Класс

Предметы математического цикла

Количество часов в старшей школе

10 класс

Алгебра и начала математического анализа

140




Геометрия

70

11 класс

Алгебра и начала математического анализа

136




Геометрия

68

Всего

314



Личностные, метапредметные и предметные результаты освоения учебного курса

Личностные результаты выпускников основной школы, формируемые при изучении алгебры и геометрии:

  1. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  2.  критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  3. представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

  4. креативность мышления, инициатива, находчивость, активность при решении математических задач;

  5. умение контролировать процесс и результат учебной математической деятельности;

  6. способность к эмоциональному восприятию математических объектов, задач, ршений, рассуждений.
    Метапредметные результаты:

  1. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моелирования явлений и процессов;

  2.  умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  3.  умение находить в различных источниках информацию, необходимую для решения математических проблем, и пред-ставлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  4.  умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  5.  умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  6. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  7. понимание сущности алгоритмических предписаний и умениеи действовать в соответствии с предложенным алгоритмом;

  8.  умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  9. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Предметные результаты:

  1. умение работать с математическим текстом ( анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;

  2. умение проводить классификации, логические обснования, доказательства математических утверждений;

  3. развитие представлений о числе и числовых системах, овладение навыками устных, письменных, инструментальных вычисленний;

  4. овладение символьным языком алгебры, приемами выполнения тождественных преобразований иррациональных, логарафмических, тригонометрических выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

  5. умение на основе функциионально-графических представлений описывать и анализировать реальные зависимости,

  6. наличие представлений о статистических закономерностях в реальном мире и различных спосабах их изучения, о вероятностных моделях;

  7. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

  8. усвоение систематических знаний о пространственных телах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;

  9. умение использовать формулы для нахождения площадей поверхности и объемов геометрических фигур;

  10. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятором, компьютера.

Содержание обучения

Алгебра и начала математического анализа 10 класс

  1. Делимость чисел

Понятие делимости. Делимость суммы и произведения. Деление с остатком. Признаки делимости. Сравнения. Решение уравнений в целых числах.

Основная цель — ознакомить с методами решения задач теории чисел, связанных с понятием делимости.

В данной теме рассматриваются основные свойства делимости целых чисел на натуральные числа и решаются задачи на определение факта делимости чисел с опорой на эти свойства и признаки делимости.

Рассматриваются свойства сравнений. Так как сравнение по модулю т есть не что иное, как «равенство с точностью до кратных т», то многие свойства сравнений схожи со свойствами знакомых учащимся равенств (сравнения по одному модулю почленно складывают, вычитают, перемножают).

Рассказывая учащимся о проблемах теории чисел, сообщаем, что решению уравнений в целых и рациональных числах (так называемых диофантовых уравнений) посвящен большой раздел теории чисел. Здесь же рассматривается теорема о целочисленных решениях уравнения первой степени с двумя неизвестными и приводятся примеры решения в целых числах уравнения второй степени.


  1. Многочлены. Алгебраические уравнения

Многочлены от одного переменного. Схема Горнера. Многочлен Р (х) и его корень. Теорема Везу. Следствия из теоремы Везу. Алгебраические уравнения. Делимость двучленов хт ± ат на х ± а. Симметрические многочлены.

Многочлены от нескольких переменных. Формулы сокращенного умножения для старших степеней. Бином Ньютона. Системы уравнений.

Основная цель — обобщить и систематизировать знания о многочленах, известные из основной школы; научить выполнять деление многочленов, возведение двучленов в натуральную степень, решать алгебраические уравнения, имеющие целые корни, решать системы уравнений, содержащие уравнения степени выше второй; ознакомить с решением уравнений, имеющих рациональные корни.

Продолжается изучение многочленов, алгебраических уравнений и их систем, которые рассматривались в школьном курсе алгебры. От рассмотрения линейных и квадратных уравнений учащиеся переходят к алгебраическим уравнениям общего вида Рп(х) = О, где Рп(х) — многочлен степени п. В связи с этим вводятся понятия степени многочлена и его корня.

Отыскание корней многочлена осуществляется разложением его на множители. Для этого сначала подробно рассматривается алгоритм деления многочленов уголком, который использовался в арифметике при делении рациональных чисел.

На конкретных примерах показывается, как получается формула деления многочленов Р(х) = М(х)Q(x) и как с ее помощью можно проверить результаты деления многочленов. Эта формула принимается в качестве определения операции деления многочленов по аналогии с делением натуральных чисел, с которым учащиеся знакомились в курсе арифметики.

Деление многочленов обычно выполняется уголком или по схеме Горнера. Иногда это удается сделать разложением делимого и делителя на множители. Схема Горнера не является обязательным материалом для всех учащихся, но, как показывает опыт, она легко усваивается и ее можно рассмотреть, не требуя от всех умения ее применять.

Способ решения алгебраического уравнения разложением его левой части на множители фактически опирается на следствия из теоремы Безу: «Если хг — корень уравнения Рп(х) = О, то многочлен Рп(х) делится на двучлен х - хг». Изучается теорема Безу, формулируются следствия из нее, являющиеся необходимым и достаточным условием деления многочлена на двучлен.

Рассматривается первый способ нахождения целых корней алгебраического уравнения с целыми коэффициентами, если такие корни есть: их следует искать среди делителей свободного члена. Для учащихся, интересующихся математикой, приводится пример отыскания рациональных корней многочлена с первым коэффициентом, отличным от 1. Среди уравнений, сводящихся к алгебраическим, рассматриваются рациональные уравнения. Хотя при решении рациональных уравнений могут появиться посторонние корни, они легко обнаруживаются проверкой. Поэтому понятия равносильности и следствия уравнения на этом этапе не являются необходимыми; эти понятия вводятся позже при рассмотрении иррациональных уравнений и неравенств.

Решение систем нелинейных уравнений проводится как известными учащимся способами (подстановкой или сложением), так и делением уравнений и введением вспомогательных неизвестных.

3. Степень с действительным показателем

Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с натуральным и действительным показателями.

Основная цель — обобщить и систематизировать знания о действительных числах; сформировать понятие степени с действительным показателем; научить применять определения арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений; ознакомить с понятием предела последовательности.

Необходимость расширения множества натуральных чисел до действительных мотивируется возможностью выполнять действия, обратные сложению, умножению и возведению в степень, а значит, возможностью решать уравнения х + а = b, ах = b, ха = b.

Рассмотренный в начале темы способ обращения бесконечной периодической десятичной дроби в обыкновенную обосновывается свойствами сходящихся числовых рядов, в частности, нахождением суммы бесконечно убывающей геометрической прогрессии.

Действия над иррациональными числами строго не определяются, а заменяются действиями над их приближенными значениями — рациональными числами.

В связи с рассмотрением последовательных рациональных приближений иррационального числа, а затем и степени с иррациональным показателем на интуитивном уровне вводится понятие предела последовательности. Формулируется и строгое определение предела. Разбирается задача на доказательство того, что данное число является пределом последовательности с помощью определения предела. На данном этапе элементы теории пределов не изучаются.

Арифметический корень натуральной степени п > 2 из неотрицательного числа и его свойства излагаются традиционно. Учащиеся должны уметь вычислять значения корня с помощью определения и свойств и выполнять преобразования выражений, содержащих корни.

Степень с иррациональным показателем поясняется на конкретном примере: число З^2 рассматривается как последовательность рациональных приближений З1,4, З1,41, .... Здесь же формулируются и доказываются свойства степени с действительным показателем, которые будут использоваться при решении уравнений, неравенств, исследовании функций.



4. Степенная функция

Степенная функция, ее свойства и график. Взаимно обратные функции. Сложные функции. Дробно-линейная функция. Равносильные уравнения и неравенства. Иррациональные уравнения. Иррациональные неравенства.

Основная цель — обобщить и систематизировать известные из курса алгебры основной школы свойства функций; изучить свойства степенных функций и научить применять их при решении уравнений и неравенств; сформировать понятие равносильности уравнений, неравенств, систем уравнений и неравенств.

Рассмотрение свойств степенных функций и их графиков проводится поэтапно, в зависимости от того, каким числом является показатель: 1) четным натуральным числом; 2) нечетным натуральным числом; 3) числом, противоположным четному натуральному числу; 4) числом, противоположным нечетному натуральному числу; 5) положительным нецелым числом; 6) отрицательным нецелым числом.

Обоснования свойств степенной функции не проводятся, они следуют из свойств степени с действительным показателем. Например, возрастание функции у = хр на промежутке х > О, где р — положительное нецелое число, следует из свойства: «Если 0 < х1 < х2, р > 0, то < ». На примере степенных функций учащиеся знакомятся с понятием ограниченной функции, учатся доказывать как ограниченность, так и неограниченность функции.

Рассматриваются функции, называемые взаимно обратными. Важно обратить внимание на то, что не всякая функция имеет обратную. Доказывается симметрия графиков взаимно обратных функции относительно прямой у = х.

Знакомство со сложными и дробно-линейными функциями начинается сразу после изучения взаимно обратных функций. Вводятся разные термины для обозначения сложной функции (суперпозиция, композиция), но употребляется лишь один. Этот материал в классах базового уровня изучается лишь в ознакомительном плане. Обращается внимание учащихся на отыскание области определения сложной функции и промежутков ее монотонности. Доказывается теорема о промежутках монотонности с опорой на определения возрастающей или убывающей функции, что позволяет изложить суть алгоритма доказательства монотонности сложной функции.



Учащиеся знакомятся с дробно-линейными функциями. В основной школе учащиеся учились строить график функции у = k/x и графики функций, которые получались сдвигом этого графика. Выделение целой части из дробно-линейного выражения приводит к знакомому учащимся виду функции.

Определения равносильности уравнений, неравенств и систем уравнений и свойств равносильности дается в связи с предстоящим изучением иррациональных уравнений, неравенств и систем иррациональных уравнений.

Основным методом решения иррациональных уравнений является возведение обеих частей уравнения в степень с целью перехода к рациональному уравнению-следствию данного.

С помощью графиков решается вопрос о наличии корней и их числе, а также о нахождении приближенных корней, если аналитически решить уравнение трудно.

Изучение иррациональных неравенств не является обязательным для всех учащихся. При их изучении на базовом уровне основным способом решения является сведение неравенства к системе рациональных неравенств, равносильной данному. После решения задач по данной теме учащиеся выводятся на теоретическое обобщение решения иррациональных неравенств, содержащих в условии единственный корень второй степени.

5. Показательная функция

Показательная функция, ее свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

Основная цель — изучить свойства показательной функции; научить решать показательные уравнения и неравенства, системы показательных уравнений.

Свойства показательной функции у = ах полностью следуют из свойств степени с действительным показателем. Например, возрастание функции у = ах, если а > 1, следует из свойства степени: «Если хх < х2, то aXl < аХг при а > 1».

Решение большинства показательных уравнений и неравенств сводится к решению простейших.

Так как в ходе решения предлагаемых в этой теме показательных уравнений равносильность не нарушается, то проверка найденных корней необязательна. Здесь системы уравнений и неравенств решаются с помощью равносильных преобразований: подстановкой, сложением или умножением, заменой переменных и т. д.

6. Логарифмическая функция

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, ее свойства и график. Логарифмические уравнения. Логарифмические неравенства.

Основная цель — сформировать понятие логарифма числа; научить применять свойства логарифмов при решении уравнений; изучить свойства логарифмической функции и научить применять ее свойства при решении логарифмических уравнений и неравенств.

До этой темы в курсе алгебры изучались такие функции, вычисление значений которых сводилось к четырем арифметическим действиям и возведению в степень. Для вычисления значений логарифмической функции нужно уметь находить логарифмы чисел, т. е. выполнять новое для учащихся действие — логарифмирование.

При знакомстве с логарифмами чисел и их свойствами полезны подробные и наглядные объяснения даже в профильных классах.

Доказательство свойств логарифма опирается на его определение. На практике рассматриваются логарифмы по различным основаниям, в частности по основанию 10 (десятичный логарифм) и по основанию е (натуральный логарифм), отсюда возникает необходимость формулы перехода от логарифма по одному основанию к логарифму по другому основанию. Так как на инженерном микрокалькуляторе есть клавиши lg и In, то для вычисления логарифма по основаниям, отличным от 10 и е, нужно применить формулу перехода.

Свойства логарифмической функции активно используются при решении логарифмических уравнений и неравенств.

Изучение свойств логарифмической функции проходит совместно с решением уравнений и неравенств.

При решении логарифмических уравнений и неравенств выполняются различные их преобразования. При этом часто нарушается равносильность. Поэтому при решении логарифмических уравнений необходимо либо делать проверку найденных корней, либо строго следить за выполненными преобразованиями, выявляя полученные уравнения-следствия и обосновывая каждый этап преобразования. При решении логарифмических неравенств нужно следить за тем, чтобы равносильность не нарушалась, так как проверку решения неравенства осуществить сложно, а в ряде случаев невозможно.



7. Тригонометрические формулы

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов ос и -а. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов. Произведение синусов и косинусов.

Основная цель — сформировать понятия синуса, косинуса, тангенса, котангенса числа; научить применять формулы тригонометрии для вычисления значений тригонометрических функций и выполнения преобразований тригонометрических выражений; научить решать простейшие тригонометрические уравнения sinx = a, cosx = а при а = 1, -1, 0.

Рассматривая определения синуса и косинуса действительного числа а, естественно решить самые простые уравнения, в которых требуется найти число а, если синус или косинус его известен, например уравнения sin a = 0, cos а = 1 и т. п. Поскольку для обозначения неизвестного по традиции используется буква х, то эти уравнения записывают как обычно: sinx = 0, cosx= 1 и т. п. Решения этих уравнений находятся с помощью единичной окружности.

При изучении степеней чисел рассматривались их свойства ap + q = ар aq, ap~q = ар : aq. Подобные свойства справедливы и для синуса, косинуса и тангенса. Эти свойства называют формулами сложения. Практически они выражают зависимость между координатами суммы или разности двух чисел а и Р через координаты чисел а и (3. Формулы сложения доказываются для косинуса суммы или разности, все остальные формулы сложения получаются как следствия..

Формулы сложения являются основными формулами тригонометрии, так как все другие можно получить как следствия: формулы двойного и половинного углов (для классов базового уровня не являются обязательными), формулы приведения, преобразования суммы и разности в произведение. Из формул сложения выводятся и формулы замены произведения синусов и косинусов их суммой, что применяется при решении уравнений.

8. Тригонометрические уравнения

Уравнения cosx = a, sinx = a, tgx = а. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные и линейные уравнения. Методы замены неизвестного и разложения на множители. Метод оценки левой и правой частей тригонометрического уравнения. Системы тригонометрических уравнений. Тригонометрические неравенства.

Основная цель — сформировать понятия арксинуса, арккосинуса, арктангенса числа; научить решать тригонометрические уравнения и системы тригонометрических уравнений, используя различные приемы решения; ознакомить с приемами решения тригонометрических неравенств.

Как и при решении алгебраических, показательных и логарифмических уравнений, решение тригонометрических уравнений путем различных преобразований сводится к решению простейших: cosx = a, sinx = a, tgx = a.

Рассмотрение простейших уравнений начинается с уравнения cosx = а, так как формула его корней проще, чем формула корней уравнения sin x = а (в их записи часто используется необычный для учащихся указатель знака (-1)п). Решение более сложных тригонометрических уравнений, когда выполняются алгебраические и тригонометрические преобразования, сводится к решению простейших.

Рассматриваются следующие типы тригонометрических уравнений: линейные относительно sinx, cosx или tgx; сводящиеся к квадратным и другим алгебраическим уравнениям после замены неизвестного; сводящиеся к простейшим тригонометрическим уравнениям после разложения на множители.

На профильном уровне дополнительно изучаются однородные (первой и второй степеней) уравнения относительно sinx и cosx, а также сводящиеся к однородным уравнениям. При этом используется метод введения вспомогательного угла.

При углубленном изучении рассматривается метод предварительной оценки левой и правой частей уравнения, который в ряде случаев позволяет легко найти его корни или установить, что их нет.

На профильном уровне рассматриваются тригонометрические уравнения, для решения которых необходимо применение нескольких методов. Показывается анализ уравнения не по неизвестному, а по значениям синуса и косинуса неизвестного, что часто сужает поиск корней уравнения. Также показывается метод объединения серий корней тригонометрических уравнений. Разбираются подходы к решению несложных систем тригонометрических уравнений.

Рассматриваются простейшие тригонометрические неравенства, которые решаются с помощью единичной окружности.
11 класс

1. Тригонометрические функции

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции y=cosх и её график. Свойства функции y=sinх и её график. Свойства функции y=tgх и её график. Обратные тригонометрические функции.

Основная цель – изучить свойства тригонометрических функций, научить учащихся применять эти свойства при решении уравнений и неравенств; научить строить графики тригонометрических функций, используя различные приемы построения графиков.

Среди тригонометрических формул следует особо выделить те формулы, которые непосредственно относятся к исследованию тригонометрических функций и построению их графиков. Так, формулы sin(-x)=-sin x и cos(-x)=cos x выражают свойства нечетности и четности функций y=sin x и y=cos x соответственно.

Построение графиков тригонометрических функций проводится с использованием их свойств и начинается с построения графика функции y=cos xпомощью графиков тригонометрических функций решаются простейшие тригонометрические уравнения и неравенства.

Также рассматриваются графики функции y=│cos х│, y= а+cos х, y= cos (х+а), y= cos ах, y= а cos х, где а – некоторое число.

Учебная цель – введение понятия тригонометрической функции, формирование умений находить область определения и множество значения тригонометрических функций; обучение исследованию тригонометрических функций на четность и нечетность и нахождению периода функции; изучение свойств функции y = cos х, обучение построению графика функции и применению свойств функции при решении уравнений и неравенств; изучение свойств функции y = sin х, обучение построению графика функции и применению свойств функции при решении уравнений и неравенств; ознакомление со свойствами функций y = tg x и y = ctg x, изучение свойств функции y = cos х, обучение построению графиков функций и применению свойств функций при решении уравнений и неравенств;

На профильном уровне дополнительно изучаются обратные тригонометрические функции, их свойства и графики.

В результате изучения главы «Тригонометрические функции» учащиеся должны знать основные свойства тригонометрических функций, уметь строить их графики и распознавать функции по данному графику, уметь отвечать на вопросы к главе, а также решать задачи этого типа.



2. Производная и её геометрический смысл

изложение материала ведется на наглядно-интуитивном уровне: многие формулы не доказываются, а только поясняются или принимаются без доказательств.



Придел последовательности. Непрерывность функции. Определение производной. Правило дифференцирования. Производная степенной функции. Производные элементарных функций. Геометрический смысл производной.

Основная цель – показать учащимся целесообразность изучения производной и в дальнейшем первообразной (интеграла), так как это необходимо при решении многих практических задач, связанных с исследованием физических явлений, вычислением площадей криволинейных фигур и объемов тел с производными границами, с построением графиков функций. Прежде всего, следует показать, что функции, графиками которых являются кривые, описывают важные физические и технические процессы.

Усвоение геометрического смысла производной и написание уравнения касательной к графику функции в заданной точке является обязательным для всех учащихся.



Основная цель дополнительно – знакомство с определением предела числовой последовательности, свойствами сходящихся последовательностей, обучение нахождению пределов последовательностей, доказательству сходимости последовательности к заданному числу; обучение выявлению непрерывных функций с опорой на определение непрерывности функции; знакомство с понятием производной функции в точке и её физическим смыслом, формирование начальных умений находить производные элементарных функций на основе определения производной.

Овладение правилами дифференцирования суммы, произведения и частного двух функций, вынесения постоянного множителя за знак производной; знакомство с дифференцированием сложных функций и правилам нахождения производной обратной функции; обучение использованию формулы производной степенной функции f (x) = xp для любого действительного p; формирование умений находить производные элементарных функций; знакомство с геометрическим смыслом производной обучение составлению уравнений касательной к графику функции в заданной точке.

В результате изучения главы «Производная и её геометрический смысл» учащиеся должны знать определение производной, основные правила дифференцирования и формулы производных элементарных функций; понимать геометрический смысл производной; уметь записывать уравнение касательной к графику функции в заданной точке решать упражнения данного типа. Иметь представление о пределе последовательности, пределе и непрерывности функции и уметь решать упражнения на применение понятия производной.


  1. Применение производной к исследованию функций

при изучении материала широко используются знания, полученные учащимися в ходе работы над предыдущей темой. Показать возможности производной в исследовании свойств функций и построении их графиков.

Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значения функции. Производная второго порядка, выпуклость и точки перегиба. Построение графиков функций.

Основная цель дополнительно – применение теоремы Лагранжа для обоснования достаточного условия возрастания и убывания функции, теоремы Ферма и её геометрическому смыслу, а также достаточному условию экстремума, знакомство с понятием асимптоты, производной второго порядка и её приложение к выявлению интегралов выпуклости функции, знакомство с различными прикладными программами, позволяющими построить график функции и исследовать его с помощью компьютера.

Учебная цель – обучение применению достаточных условий возрастания и убывания к нахождению промежутков монотонности функции; знакомство с понятиями точек экстремума функции, стационарных и критических точек, с необходимыми и достаточными условиями экстремума функции; обучение нахождению точек экстремума функции; обучение нахождению наибольшего и наименьшего значений функции с помощью производной; знакомство с понятием второй производной функции и её физическим смыслом; с применением второй производной для нахождения интегралов выпуклости и точек перегиба функции; формирование умения строить графики функций – многочленов с помощью первой производной, с привлечением аппарата второй производной.

В результате изучения главы «Применение производной к исследованию функций» учащиеся должны знать, какие свойства функции выявляются с помощью производной, уметь строить графики функций, решать задачи на нахождения наибольшего (наименьшего) значения функции данного типа упражнений.

4 . Первообразная и интеграл

рассматриваются первообразные конкретных функций и правила нахождения первообразных.



Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. Применение интегралов для решения физических задач.

Основная цель ознакомление учащихся с понятием первообразной и обучение нахождению площадей криволинейных трапеций. Площадь криволинейной трапеции определяется как предел интегральных сумм. Большое внимание уделяется приложениям интегрального исчисления к физическим и геометрическим задачам. Связь между первообразной и площадью криволинейной трапеции устанавливается формулой Ньютона-Лейбница. Далее возникает определенный интеграл как предел интегральной суммы; при этом формула Ньютона-Лейбница также оказывается справедливой. Таким образом, эта формула является главной: с её помощью вычисляются определенные интегралы и находятся площади криволинейных трапеций. Знакомство с простейшими дифференциальными уравнениями.

Учебная цель – ознакомление с понятием первообразной, обучение нахождению первообразной для степеней и тригонометрических функций; ознакомление с понятием интегрирования и обучение применению правил интегрирования при нахождении первообразных; формирование понятия криволинейной трапеции, ознакомление с понятием определенного интеграла, обучение вычислению площади криволинейной трапеции в простейших случаях; ознакомить учащихся с применением интегралов для физических задач, научить решать задачи на движение с применением интегралов.

В результате изучения главы «Первообразная и интеграл» учащиеся должны знать правила нахождения первообразных основных элементарных функций, формулу Ньютона-Лейбница и уметь их применять к вычислению площадей криволинейных трапеций при решении задач данного типа.

5. Комбинаторика

содержит основные формулы комбинаторики, применение знаний при выводе формул алгебры, вероятность и статистическая частота наступления события. Тема не насыщена теоретическими сведениями и доказательствами, она имеет, прежде всего, общекультурное и общеобразовательное значение.



Правило произведения. Размещения с повторениями. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.

Основная цель – ознакомление с основными формулами комбинаторики и их применением при решении задач, развивать комбинаторное мышление учащихся, ознакомить с теорией соединений, обосновать формулу бинома Ньютона. Основной при выводе формул числа перестановок и размещений является правило умножения, понимание которого формируется при решении различных прикладных задач. Свойства числа сочетаний доказываются и затем применяются при организации и исследовании треугольника Паскаля.

Учебная цель – овладение одним из основных средств подсчета числа различных соединений, знакомство учащихся с размещениями с повторениями. Знакомство с первым видом соединений – перестановками; демонстрация применения правила произведения при выводе формулы числа перестановок из п элементов. Введение понятия размещения без повторений из м элементов по п; создание математической модели для решения комбинаторных задач, сводимых к подсчету числа размещений; знакомство с сочетаниями и их свойствами; решение комбинаторных задач, сводящихся к подсчету числа сочетаний из м элементов по п; обоснованное конструирование треугольника Паскаля; обучение возведению двучлена в натуральную степень с использованием формулы Ньютона. Составление порядочных множеств (образование перестановок); составление порядочных подмножеств данного множества (образование размещений); доказательство справедливости формул для подсчета числа перестановок с повторениями и числа сочетаний с повторениями, усвоение применения метода математической индукции.

В результате изучения главы «Комбинаторика» учащиеся должны знать, основные формулы комбинаторики, уметь находить вероятность случайных событий в простейших случаях, использовать классическое определение вероятности и применения их при решении задач данного типа.

6. Элементы теории вероятностей

в программу включено изучение лишь отдельных элементов теории вероятностей. При этом введению каждого понятия предшествует неформальное объяснение, раскрывающее сущность данного понятия, его происхождение и реальный смысл. Так вводятся понятия случайных, достоверных и невозможных событий, связанных с некоторым испытанием; определяются и иллюстрируются операции над событиями. Вероятность события. Сложение вероятностей. Вероятность произведения независимых событий.



Основная цель – сформировать понятие вероятности случайного независимого события. Исследование простейших взаимосвязей между различными событиями, а также нахождению вероятностей видов событий через вероятности других событий. Классическое определение вероятности события с равновозможными элементарными исходами формируется строго, и на его основе (с использованием знаний комбинаторики) решается большинство задач. Понятие геометрической вероятности и статистической вероятности вводились на интуитивном уровне. При изложении материала данного раздела подчеркивается прикладное значение теории вероятностей в различных областях знаний и практической деятельности человека.

Учебная цель – знакомство с различными видами событий, комбинациями событий; введение понятия вероятности события и обучение нахождению вероятности случайного события с очевидными благоприятствующими исходами; знакомство с теоремой о вероятности суммы двух несовместных событий и её применением, в частности при нахождении вероятности противоположного события; и с теоремой о вероятности суммы двух производных событий; интуитивное введение понятия независимых событий; обучение нахождению вероятности произведения двух независимых событий.

В результате изучения главы «Элементы теории вероятностей» учащиеся должны уметь находить вероятности случайных событий с помощью классического определения вероятности при решении упражнений данного типа, иметь представление о сумме и произведении двух событий, уметь находить вероятность противоположного события, интуитивно определять независимые события и находить вероятность одновременного наступления независимых событий в задачах.

7. Комплексные числа

Сложение и умножение комплексных чисел. Модуль комплексного числа. Вычитание и деление комплексных чисел. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Свойства модуля и аргумента. Квадратное уравнение с комплексным неизвестным. Примеры решения алгебраических уравнений. Основные цели — завершение формирования представления о числе; обучение действиям с комплексными числами и демонстрация решений различных уравнений на множестве комплексных чисел.

Рассматриваются четыре арифметических действия с комплексными числами, заданными в алгебраической форме. Вводится понятие комплексной плоскости, на которой иллюстрируется геометрический смысл модуля комплексного числа и модуля разности комплексных чисел. Рассматривается переход от алгебраической к тригонометрической форме записи комплексного числа и обратный переход. Желательно обучить учащихся технических и физико-математических классов возведению в степень комплексного числа, заданного в тригонометрической форме.



8. Уравнения и неравенства с двумя переменными

последняя тема курса не нова для учащихся старших классов. Решение систем уравнений с помощью графика знакомо школьникам с основной школы. Теперь им предстоит углубить знания, полученные ранее, и ознакомиться с решением неравенств с двумя переменными и их систем. Учащиеся изучают различные методы решения уравнений и неравенств, в том числе с параметрами.



Линейные уравнения и неравенства с двумя переменными. Нелинейные уравнения и неравенства с двумя переменными.

Основная цель – обобщить основные приемы решения уравнений и систем уравнений, научить учащихся изображать на координатной плоскости множество решений линейных неравенств и систем линейных неравенств с двумя переменными, сформировать навыки решения задач с параметрами, показать применение математических методов для решения содержательных задач из различных областей науки и практики.

Учебная цель – научить учащихся изображать на координатной плоскости множество решений линейных неравенств и систем линейных неравенств с двумя переменными.

В результате изучения главы «Уравнения и неравенства с двумя переменными» учащиеся должны уметь решать уравнения, неравенства и системы уравнений и неравенств с двумя переменными. Знать и уметь применять основные приемы для решения уравнений и систем уравнений, решать системы уравнений и неравенства с помощью графика.

9. Итоговое повторение курса алгебры и начал математического анализа.

Уроки итогового повторения имеют своей целью не только восстановление в памяти учащихся основного материала, но и обобщение, уточнение систематизацию знаний по алгебре и началам математического анализа за курс средней школы.

Повторение предлагается проводить по основным содержательно-методическим линиям и целесообразно выстроить в следующим порядке: вычисления и преобразования, уравнения и неравенства, функции, начала математического анализа.

При проведении итогового повторения предлагается широкое использование и комбинирование различных типов уроков (лекций, семинаров, практикумов, консультаций и т.е.) с целью быстрого охвата большого по объему материала. Необходимым элементом уроков итогового повторения является самостоятельная работа учащихся. Она полезна как самим учащимся, так и учителю для осуществления обратной связи. Формы проведения самостоятельных работ разнообразны: от традиционной работы с двумя, тремя заданиями до тестов и работ в форме рабочей тетрадей с заполнением пробелов в приведенных рассуждениях.

В результате обобщающего повторения курса алгебры и начала анализа за 11 класс создать условия учащимся для выявления:

- владения понятием степени с рациональным показателем, умение выполнять тождественные преобразования и находить их значения;

- умения выполнять тождественные преобразования тригонометрических, иррациональных, показательных, логарифмических выражений;

- умения решать системы уравнений, содержащих одно или два уравнения (логарифмических, иррациональных, тригонометрических), решать неравенства с одной переменной на основе свойств функции;

- умения использовать несколько приемов при решении уравнений;

- решать уравнения с использованием равносильности уравнений; использовать график функции при решении неравенств (графический метод);

- умения находить производную функции; множество значений функции; область определения сложной функции; использовать четность и нечетность функции;

- умения исследовать свойства сложной функции; использовать свойство периодичности функции для решения задач; читать свойства функции по графику и распознавать графики элементарных функций;

- умения решать и проводить исследование решения текстовых задач на нахождение наибольшего (наименьшего) значения величины с применением производной;

- умения решать задачи параметрические на оптимизацию;

- умения решать комбинированные уравнения и неравенства; использовать несколько приемов при решении уравнений и неравенств;

- умения извлекать необходимую информацию из учебно-научных текстов; привести примеры, подобрать аргументы, сформулировать выводы.



Геометрия 10 класс

Введение

Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом. Понятие об аксиоматическом способе построения геометрии.



Параллельность прямых и плоскостей

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых.

Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур. Центральное проектирование.

Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды. Построение сечений.



Перпендикулярность прямых и плоскостей

Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Перпендикулярность плоскостей, признаки и свойства. Ортогональное проектирование. Площадь ортогональной проекции многоугольника. Двугранный угол, линейный угол двугранного угла.

Многогранники

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности.

Прямая и наклонная призма. Правильная призма.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Векторы в пространстве

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам Компланарные векторы. Разложение вектора по трем некомпланарным векторам.



Итоговое повторение курса геометрии 10 класса
11 класс

Метод координат в пространстве

Прямоугольная система координат в пространстве. Базис. Координаты вектора. Свойства векторов в координатах. Простейшие задачи в координатах. Скалярное, векторное и смешанное произведение векторов в координатах. Уравнения прямой, плоскости и поверхностей II порядка в пространстве. Угол между прямыми, плоскостями, прямой и плоскостью. Условия параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.



Тела вращения, объемы

Понятие тела вращения. Цилиндр. Площадь поверхности цилиндра. Конус. Конические сечения. Усеченный конус. Площадь их поверхности Сфера и шар. Уравнение сферы и неравенство шара. Взаимное расположение сферы и плоскости. Плоскость, касательная к сфере. Площадь сферы. Шаровой сегмент, слой, сектор.



Объемы тел

Объем прямоугольного параллелепипеда. Объем прямой призмы и цилиндра. Объем наклонной призмы, пирамиды, конуса.



Вписанные и описанные многогранники и тела вращения

Описанные шары. Вписанные шары. Комбинации многогранников с цилиндром и конусом. Комбинации многогранников.



Заключительное повторение курса геометрии

Повторение определений, фактов и теорем планиметрии. Метод дополнительных построений при решении задач. Треугольники. Четырехугольники. Векторы на плоскости. Окружность

Алгебраический метод решения геометрических задач.


Каталог: site
site -> Методические рекомендации по проведению Дня Знаний, посвященного Году кино в РФ
site -> Блестящие будущие возможности в сфере икт для нового поколения женщин
site -> Нарушения формирования навыков жизнедеятельности у подростков и лиц юношеского возраста, с детства страдающих хроническими психическими расстройствами
site -> Психосоциальная терапия в комплексном лечении больных с первым приступом юношеского эндогенного психоза
site -> Ларцева А. 1 Перевод имен собственных на примере книги ховарда рейнголда
site -> Памятка для родителей подростков и старших школьников
site -> Занятие №18 Здравствуйте, участники программ личностного развития для детей!
site -> Программа кружка «Юный журналист»


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   32


База данных защищена авторским правом ©nethash.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал