Владислав Фельдблюм



Pdf просмотр
страница3/16
Дата16.02.2017
Размер6.38 Mb.
Просмотров2120
Скачиваний1
1   2   3   4   5   6   7   8   9   ...   16




1.4. Способы получения наночастиц

Для получения наночастиц применяются как обычные химические синтезы, так и специальные методы. К первым относятся метод «золь-гель», криохимический метод, метод термического разложения или восстановления комплексов металлов в контролируемых уловиях, электрокоррозионный метод, самораспространяющийся высокотемпературный синтез и другие. К специальным методам относятся получение наночастиц в плазме электрической дуги, получение наночастиц при облучении лазером, ударно- волновой синтез, механический и механо-химический методы измельчения с применением высокоэффективных шаровых мельниц и другие. При любом методе получения наночастиц приходится одновременно решать проблему их стабилизации (сохранения) во избежание самопроизвольного укрупнения.
Чаще всего это достигается применением тех или иных химических стабилизаторов. Более подробно о методах получения и стабилизации наночастиц можно прочитать в монографиях [22, 23] и обзорной статье [24].

Принципиально все методы синтеза наночастиц, как физические так и химические, можно разделить на две большие группы:

диспергационные методы, или методы получения наночастиц путем измельчения обычного макрообразца;

конденсационные методы, или методы «выращивания» наночастиц из отдельных атомов
При диспергационных методах исходные тела измельчают до наночастиц. Данный подход к получению наночастиц образно называется некоторыми учеными «подход сверху вниз». Это самый простой из всех способов создания наночастиц, своего рода «мясорубка» для макротел.
Данный метод широко используется в производстве материалов для микроэлектроники, он заключается в уменьшении размеров объектов до нановеличин в пределах возможностей промышленного оборудования и используемого материала. При диспергационном способе, в условиях достаточного поступления энергии (прежде всего механической), размер фрагментов, на которые распадается монокристалл, уменьшается. Пока приток механической энергии велик, большинство фрагментов имеют нанометровый размер и система остается в наносостоянии. Когда же
«мясорубка» останавливается, нескомпенсированность поверхностных связей приводит к тому, что нанофрагменты начинают срастаться и укрупняться. Все это продолжается до тех пор, пока в системе не будет воссоздан исходный кристалл.

57

Чтобы предотвратить этот нежелательный эффект обратной кристаллизации, в систему вводится некоторый стабилизатор, который обычно представляет собой молекулярный раствор белков, полимеров или поверхностно активных веществ (ПАВ). На определенной стадии, когда размер кристалла выходит за рамки нанометровой области, стабилизатор вступает в действие: его молекулы облепляют растущую наночастицу со всех сторон, что препятствует ее дальнейшему росту. Регулируя состав и концентрацию стабилизатора, можно получать наночастицы любого диаметра.
Разные стабилизаторы по-разному взаимодействуют с наночастицами.





Измельчать вещество в наночастицы можно не только механически.
Российская компания «Передовые порошковые технологии» получает наночастицы, взрывая металлическую нить мощным импульсом тока.

58

Электровзрывной метод получения наночастиц.
Существуют и более экзотические способы получения наночастиц.
Американские ученые в 2003 году собрали с листьев фигового дерева микроорганизмы Rhodococcus – и поместили их в золотосодержащий раствор. Бактерии действовали как химический восстановитель, собирая из ионов серебра аккуратные наночастицы диаметром около 10 нм. Строя наночастицы, бактерии чувствовали себя нормально и продолжали размножаться.
При конденсационных методах (“подход снизу вверх”) наночастицы получают путем объединения отдельных атомов. Метод заключается в том, что в контролируемых условиях происходит формирование ансамблей из атомов и ионов. В результате образуются новые объекты с новыми структурами и, соответственно, с новыми свойствами, которые можно программировать путем изменения условий формирования ансамблей. Этот подход облегчает решение проблемы миниатюризации объектов, приближает к решению ряда проблем литографии высокого разрешения, создания новых микропроцессоров, тонких полимерных пленок, новых полупроводников.
Методом «снизу-вверх», манипулируя молекулами и атомами, можно создавать искусственные объекты (синтетические молекулы, кластеры, состоящие из сотен атомов), которых не существует в природе, и создавать из них блоки наноматериалов. В связи с этим изучение атомов и молекул проводят с точки зрения их функций.
Этот метод основан на феномене конденсации, с которым все хорошо знакомы. Конденсация (от лат. condensatio – уплотнение, сгущение) – это переход вещества из газообразного состояния в конденсированное (твердое или жидкое) вследствие его охлаждения. Если хорошенько подышать на стеклышко, оно запотеет. На самом деле это означает, что на нем образуется

59 множество крошечных, не видимых глазу капелек воды. Если температура воздуха в помещении ниже температуры выдыхаемого нами пара, то при дальнейшем охлаждении микроскопические капельки будут собираться в более крупные и явные капли.

Образование капелек жидкости в процессе конденсации
Примерно то же самое происходит и при конденсационном способе получения наночастиц. Исходные макротела сначала испаряют, после чего образующийся пар конденсируют до образования наночастиц нужного размера.
В результате компактное вещество превращается в ультрадисперсное. Нечто похожее происходит и при восстановлении наночастиц из ионных растворов, только при этом используется не пар, а жидкость.
Во всех методах получения наночастиц требуется мощный приток энергии от внешнего источника, поскольку эти методы приводят к получению наночастиц в неравновесном метастабильном состоянии. Как только приток энергии прекращается, система стремится вернуться к равновесию. Почему это происходит? Рассмотрим пример – монокристалл нагревают до плавления и последующего испарения. Затем образовавшийся пар резко охлаждают. По мере охлаждения зарождаются и укрупняются наночастицы. Они начинают упорядочиваться и объединяться в

60 наноагрегаты. Если предоставить такую систему самой себе, то постепенно границы между наночастицами в агрегатах исчезают и они превращаются в микрокристаллы. При длительном выдерживании микрокристаллов в паре наиболее мелкие и дефектные из них испаряются, а более крупные и совершенные продолжают расти. И так до тех пор, пока в системе не воссоздастся исходный монокристалл. В течение всего интервала времени от момента, когда в паре уже накопилось заметное количество наночастиц, до момента, когда большинство наночастиц достигнет размера 100 нм, система находится в наносостоянии. Затем она переходит в равновесие, появление наночастиц прекращается. И если не создать искусственные условия для их консервации, то возникшие частицы могут перейти в стадию компактного вещества. В биохимическом, фотохимическом и радиационно-химическом синтезе конденсация наночастиц происходит не из пара, а из раствора в специальных условиях, обеспечивающих защиту наночастиц от слипания и реакций с раствором.
Рассмотрим способы получения наночастиц более подробно.
Наночастицы могут образовываться в результате разложения при высокой температуре твердых веществ, содержащих катионы металлов, молекулярные анионы или металлорганические соединения. Такой процесс называется термолизом. Например, малые частицы лития можно получить разложением азида лития LiN3. Вещество помещается в откачанную кварцевую трубку и нагревается до 400оC. При температуре около 370оС азид разлагается с выделением газообразного N2, что можно определить по увеличению давления в вакуумированном пространстве. Через несколько минут давление падает до первоначального уровня, показывая, что весь N2 удален.
Оставшиеся атомы лития объединяются в маленькие коллоидные металлические частицы. Таким методом можно получить частицы с размерами менее 5 нм. Частицы можно пассивировать, вводя в камеру соответствующий газ.
В процессах термического разложения обычно используют сложные металлорганические соединения, гидроксиды, карбонилы, формиаты, нитраты, оксалаты, амиды и амиды металлов, которые при определенной температуре распадаются с образованием синтезируемого вещества и выделением газовой фазы. Например, пиролизом формиатов железа, кобальта, никеля, меди в вакууме или инертном газе при температуре 470 –
530 К получают дисперсные порошки металлов со средним размером частиц
100 – 300 нм. Нанокристаллический порошок нитрида алюминия (AlN) со средним размером частиц 8 нм получали разложением в аммиаке при 900 К полиамида алюминия. Бориды переходных металлов можно получать пиролизом борогидридов при 600 – 700 К, то есть при температуре, которая гораздо ниже обычных температур твердофазного синтеза. Характерной особенностью термического разложения является сравнительно невысокая

61 селективность процесса, поскольку продукт реакции обычно представляет собой смесь целевого продукта и других соединений.
Метод восстановления используют для получения наноматериалов
(чаще всего металлов) из исходных кислородосодержащих соединений. При переработке оксидов металлов в качестве восстановителей используют газы – водород, монооксид углерода, конвертированный природный газ. Этим процессам соответствуют реакции в результате которых получают нанопорошки металлов: Fe, W, Ni, Mo, Cu, Co. Распространенным методом получения высокодисперсных металлических порошков является восстановление соединений металлов (гидрооксидов, хлоридов, нитратов, карбонатов) в токе водорода при температуре менее 500 К. Достоинствами этого метода являются низкое содержание примесей и узкое распределение частиц порошка по размерам.
Широко используется и получение наночастиц в жидкой фазе, прежде всего методом химической конденсации. Химические методы получения наночастиц и ультрадисперсных систем известны достаточно давно.
Коллоидный раствор золя золота (красного) с размером частиц 20 нм был получен в 1857г. М.Фарадеем. Агрегативная устойчивость золя объясняется образованием двойного электрического слоя на поверхности раздела твердое тело-раствор и возникновением электростатической составляющей расклинивающего давления, являющегося основным фактором стабилизации данной системы. Наиболее простым и часто используемым способом является синтез наночастиц в растворах при протекании различных реакций.
Для получения металлических наночастиц применяют реакции восстановления, при которых в качестве восстановителя используют алюмо- и борогидриды, тетрабораты, гипофосфиты и многие другие неорганические и органические соединения. Наноразмерные частицы солей и оксидов металлов получают чаще всего в реакциях обмена и гидролиза. Например, золь золота с размером частиц 7 нм может быть получен восстановлением хлорида золота боргидридом натрия с использованием в качестве стабилизатора додекантиола. Тиолы широко используются для стабилизации наночастиц полупроводников. В качестве стабилизаторов используют и другие органические соединения, способные образовывать поверхностные комплексы. Реакцию гидролиза проводят в органических растворителях.
Последующая полимеризация приводит к образованию геля. Этот метод обладает чрезвычайно широкими возможностями и позволяет получать материалы, содержащие и биологически активные макромолекулы.
К химическим методам относят и осаждение в растворах и расплавах.
Общие закономерности образования наночастиц в жидких средах зависят от множества факторов: состава и свойств исходного вещества (раствора,

62 расплава); характера диаграммы равновесия фаз рассматриваемой системы; способа создания пересыщения раствора или расплава; используемого оборудования и режимов его работы. В случае синтеза необходимых фаз проводят термообработку порошка после его сушки или эти фазы объединяют в оду. После термообработки проводят дезагрегацию агрегатов до размеров наночастиц. Исходные вещества и растворитель выбирают так, чтобы побочные продукты можно было полностью удалять из целевого продукта при промывании и последующей термообработки без загрязнения окружающей среды. Для эффективного смешения реагентов используют перемешивающие устройства с различными типами мешалок (пропеллерные, стержневые, турбинные), циркуляционное перемешивание с помощью насосов (центробежных и шестеренчатых), диспергирующих устройств
(форсунки, сопла, инжекторы, вращающиеся диски, акустические распылители и так далее).
Методом осаждения можно получать оксидные металлические и металлоксидные материалы, композиции на их основе, различные ферриты и соли. Ответственной стадией, определяющей свойства полученного порошка, является его отделение от жидкой фазы. С возникновением межфазной границы газ-жидкость резко увеличивают силы Лапласа, сжимаемые частицы. В результате действия этих сил в частицах наноразмерного спектра возникают сжимающие давления порядка мегапаскалей, которые используются при компактировании макрочастиц в монолитные пористые изделия. При этом в порах агрегата создаются гидротермальные условия, приводящие к увеличению растворимости частиц и упрочнению агрегатов за счет механизма растворение-конденсация. Частицы объединяются в прочный агрегат, а далее – в отдельный кристалл. Для удаления жидкой фазы из осадка используют процессы фильтрования, центрифугирования, электрофореза, сушки. Вероятность образования прочных агрегатов можно уменьшить за счет замещения воды органическими растворителями, а также использованием ПАВ, сублимационной сушки, применением сушильного агента в сверхкритических условиях. Разновидностью технологии получения наночастиц в жидких средах является управляемое растворение более крупных частиц в подходящих растворителях. Для этого необходимо затормозить или вообще прекратить процесс их растворения в интервале наноразмеров. Этим же способом можно проводить коррекцию размеров получаемых перечисленными методами частиц в случаях, когда их размер оказался больше необходимого.
При осаждении в расплавах жидкой средой являются расплавы солей или металлов (чаще всего используют расплавы солей). Образование твердой фазы происходит при достаточно высокой температуре, когда диффузионные процессы вызывают высокую скорость роста кристаллов. Основной

63 проблемой при этом является исключение захвата синтезируемым порошком компонентов побочных соединений. Для выделения синтезированного порошка после охлаждения соль растворяют в подходящих растворителях.
Изменяя степень неравновесности процесса можно регулировать структуру материала. Если остановить процесс на стадии, когда твердая фаза имеет наноразмеры, можно получать наноматериал. Однако сделать это весьма трудно из-за большой скорости диффузионного массопереноса при достаточно высокой температуре среды. Более перспективен этот метод для получения наночастиц растворением исходных более крупных частиц. В этом случае можно сразу получать нанокомпозит, если растворяющаяся среда, например стеклообразная, будет играть роль матрицы для наночастиц.
Интересным и важным методом получения наночастиц в растворах является «золь-гель метод». Этот процесс включает несколько основных технологических стадий. Первоначально получают водные или органические растворы исходных веществ. Из растворов образуют золи (коллоидные системы) с твердой дисперсной фазой и жидкой дисперсионной средой для получения золя используют, например, гидролиз солей слабых оснований или алкоголятов. Можно использовать и другие реакции, приводящие к образованию стабильных и концентрированных золей (например, применение пептизаторов – веществ, препятствующих распаду агрегатов частиц в дисперсных системах). Эффективным является нанесение на наночастицы в процессе гидролиза защитного слоя из водорастворимых полимеров или ПАВ, добавляемых вместе с водой в процессе гидролиза.
Затем золь переводят в гель при удалении из него части воды нагреванием, экстракцией соответствующим растворителем. В ряде случаев проводят распыление водного золя в нагретую несмешивающуюся с водой органическую жидкость. Переводя золь в гель, получают структурированные коллоидные системы. Твердые частицы дисперсной фазы соединены между собой в рыхлую пространственную сетку, которая содержит в своих ячейках жидкую дисперсионную среду, лишая текучести систему в целом. Контакты между частицами легко и обратимо разрушаются при механических и тепловых воздействиях. Гели с водной дисперсионной средой называются гидрогелями, а с углеводородной – органогелями. Высушиванием геля можно получать аэрогели или ксерогели – хрупкие микропористые тела
(порошки). Порошки используют для формования изделий, плазменного напыления и так далее. Гель можно использовать непосредственно для получения пленок или монолитных изделий. В настоящее время золь-гель метод широко используется для получения наночастиц из неорганических неметаллических материалов.
Важное место в нанотехнологиях занимает электрохимический метод получения наночастиц. Электрохимический метод связан с выделением на катоде вещества в процессе электролиза простых и комплексных катионов и анионов. Если в цепь постоянного электрического тока включить систему,

64 состоящую из двух электродов и раствора (расплава) электролита, то у электродов будут протекать реакции окисления-восстановления. На аноде
(положительный электрод) анионы отдают электроны и окисляются; на катоде (отрицательный электрод) катионы присоединяют электроны и восстанавливаются. Образующийся на катоде осадок в результате, например, электрокристаллизации, в морфологическом отношении может быть как рыхлым, так и плотным слоем из множества микрокристаллитов. На текстуру осадка влияют многие факторы, такие, например, как природа вещества и растворителя, тип и концентрация ионов целевого продукта и посторонних примесей, адгезионные свойства осаждаемых частиц, температура среды, электрический потенциал, условия диффузии и другие. Одним из перспективных научных направлений является использования электрохимического синтеза для конструирования наноструктурных материалов. Суть его заключается в формировании в ходе кинетически контролируемого электровосстановления двухмерных (лэнгмюровских) монослоев металлических наночастиц под монослойными матрицами ПАВ.
Одним из самых распространенных химических методов получения ультрадисперсных порошков металлов, нитридов, карбидов, оксидов, боридов, а также их смесей является плазмохимический синтез. Для этого метода характерны очень быстрое (за малые доли секунды) протекание реакции вдали от равновесия и высокая скорость образования зародышей новой фазы при относительно малой скорости их роста. При плазмохимическом синтезе используют низкотемпературную (400-800 К) азотную, аммиачную, углеводородную, аргонную плазму, которую создают с помощью электрической дуги, электромагнитного высокочастотного поля или их комбинации в реакторах, называемых плазмотронами. В них поток исходных веществ (газообразных, жидких или твердых) быстро пролетает через зону, где поддерживается плазма, получая от нее энергию для проведения реакций химического превращения. Плазмообразующим газом может быть и само исходное вещество. Характеристики получаемых порошков зависят от используемого сырья, технологии синтеза и типа плазмотрона; их частицы являются монокристаллами и имеют размеры 10-
100 нм и более. Процессы, происходящие при плазмохимическом синтезе и газофазном методе получения наночастиц, близки между собой. После взаимодействия в плазме происходит образование активных частиц, находящихся в газовой фазе. В дальнейшем необходимо сохранить их наноразмеры и выделить из газовой фазы.
На практике в настоящее время используются реакторы, в рабочий объем которых вводятся излучения лазера через специальное окно и поток реакционной смеси. В области их пересечения возникает реакционная зона, где происходит образование частиц. Размер частиц зависит от давления реактора и интенсивности излучения лазера. Параметрами лазерного излучения управлять значительно легче (чем высокочастотной или дуговой плазмой), что позволяет получать

65 более узкое распределение частиц по размерам. Таким способом получили порошок нитрида кремния с размерами частиц 10-20 нм.
Разновидностью вышеописанного является электроэрозионный метод.
Суть метода заключается в образовании дуги между электродами, погруженными в ванну с жидкостью. В этих условиях вещество электродов частично диспергируется и взаимодействует с жидкостью с образованием дисперсного порошка. Например, электроэрозия алюминиевых электродов в воде приводит к образованию порошка гидроксида алюминия. Полученный твердый осадок отделяют от жидкой фазы методами фильтрации, центрифугирования, электрофореза. Затем порошок сушат и в случае необходимости предварительно измельчают. В процессе последующей термообработки из порошка синтезируют целевой продукт, из которого в процессе дезагрегации получают частицы нужного размера. Этим методом можно получать частицы наноразмеров, если в жидкую фазу помещать частицы большого размера. Ещё одна разновидность - ударно-волновой или детонационный синтез. Данным методом наночастицы получают в плазме, образованной в процессе взрыва бризантных взрывчатых веществ (ВВ) во взрывной камере (детонационной трубе). В зависимости от мощности и типа взрывного устройства ударно-волновое взаимодействие на материал осуществляется за очень короткий промежуток времени (десятые доли микросекунд) при температуре более 3000 К и давлении в несколько десятков гектопаскалей. При таких условиях возможен фазовый переход в веществах с образованием упорядоченных диссипативных наноразмерных структур. Ударно-волновой метод наиболее эффективен для материалов, синтез которых осуществляется при высоких давлениях, например, порошков алмаза, кубического нитрата бора и других.
Сочетанием различных методов стал механохимический синтез наночастиц. При этом способе обеспечивают механическую обработку твердых тел, в результате которой происходят измельчение и пластическая деформация веществ. Измельчение материалов сопровождается разрывом химических связей, что предопределяет возможность последующего образования новых химических связей, то есть протекание механохимических реакций. Механическое воздействие при измельчении материалов является импульсным; при этом возникновение поля напряжений и его последующая релаксация происходят не в течение всего времени пребывания частиц в реакторе, а только в момент соударения частиц и в короткое время после него. Механическое воздействие бывает не только импульсивным, но и локальным, так как происходит не во всей массе твердого вещества, а лишь там, где возникает и затем релаксирует поле напряжений. Воздействие энергии, выделяющей при высокой степени неравновесности во время удара или истирания, из-за низкой

66 теплопроводности твердых тел приводит к тому, что какая-то часть вещества находится в виде ионов и электронов – в состоянии плазмы.
Механохимические процессы в твердом теле можно объяснить с использованием фононной теории разрушения хрупких тел (фонон – квант энергии упругих колебаний кристаллической решетки).
Механическое измельчение твердых материалов осуществляют в мельницах сверхтонкого измельчения
(шаровых, планетарных, вибрационных, струйных). При взаимодействии рабочих органов с измельчаемым материалом возможен его локальный кратковременный разогрев до высоких (плазменных) температур, получение которых в обычных условиях осуществляется при высоких температурах.
Механическим способом можно получать нанопорошки с размером частиц от
200 до 5-10 нм. Так, при помоле смеси металла и углерода в течении 48 часов были получены частицы TiC, ZrC, VC и NbC с размером 7-10 нм. В шаровой мельнице из смеси порошков вольфрама углерода и кобальта с исходным размером частиц около 75 мкм за 100 часов были получены частицы нанокомпозита WC-Co с размером частиц 11-12 нм.
Очень интересны и перспективны биохимические методы получения наноматериалов. Во многих случаях живые организмы, например, некоторые бактерии и простейшие организмы, производят минеральные вещества с частицами и микроскопическими структурами в нанометровом диапазоне размеров. В процессах биоминерализации действуют механизмы тонкого биохимического контроля, в результате чего производятся материалы с четко определенными характеристиками. Живые организмы могут быть использованы как прямой источник ультрадисперсных материалов, свойства которых могут быть изменены путем варьирования биологических условий синтеза или переработки. Ультрадисперсные материалы, полученные биохимическими методами синтеза, могут быть исходными материалами для некоторых уже опробованных и известных методов синтеза и обработки наноматериалов, а также в ряде технологических процессов. Пока работ в этом направлении исследований немного, но уже можно указать ряд примеров получения и использования биологических наноматериалов. В настоящее время ультрадисперсные материалы могут быть получены из ряда биологических объектов, например, ферритинов и связанных с ними белков, содержащих железо, магнетических бактерий и другое. Так, ферритины (вид белков) обеспечивают для живых организмов возможность синтезировать частицы гидроксидов и оксифосфатов железа нанометрового размера.
Способность магнетотактических бактерий использовать линии магнитного поля Земли для собственной ориентации позволяет иметь цепочки наноразмерных (40-100 нм) однодоменных частиц магнетита.
Возможно также получение наноматериалов с помощью микроорганизмов. В настоящее время открыты бактерии, окисляющие серу,

67
железо, водород и другие вещества. С помощью микроорганизмов стало возможным проводить химические реакции для извлечения из руд различных металлов, минуя традиционные технологические процессы. В качестве примера можно привести технологию бактериального выщелачивания меди из сульфидных материалов, урана из руд, отделение примесей мышьяка от концентратов олова и золота. В некоторых странах в настоящее время до 5% меди, большое количество урана и цинка получают микробиологическими методами.
Существуют хорошие предпосылки, подтвержденными лабораторными исследованиями, использования микробиологических процессов извлечения марганца, висмута, свинца, германия из бедных карбонатных руд. С помощью микроорганизмов можно вскрыть тонко вкрапленное золото арсенопиритных концентратов. Поэтому в технической микробиологии появилось новое направление, которое называют микробиологической гидрометаллургией.
Использование низких температур характерно для криохимического синтеза наночастиц. Высокая активность атомов и кластеров металлов в отсутствие стабилизаторов обуславливает реакцию в более крупные частицы.
Процесс агрегации атомов металлов идет практически без энергии активации. Стабилизацию активных атомов почти всех элементов периодической системы удалось осуществить при низких (77 К) и сверхнизких (4-10 К) температурах методом матричной изоляции. Суть этого метода состоит в применении инертных газов при сверхнизких температурах.
Чаще всего в качестве матрицы используются аргон и ксенон. Пары атомов металлов конденсируют с большим, обычно тысячекратным, избытком инертного газа на поверхность, охлаждаемую, до 10-12 К. Значительное разбавление инертных газов и низкие температуры практически исключают возможность диффузии атомов металлов, и в конденсате происходит их стабилизация. Физико-химические свойства таких атомов исследуют различными спектральными и радиоспектральными методами.



Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   16


База данных защищена авторским правом ©nethash.ru 2019
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал