Методические указания и контрольные задания для студентов-заочников



страница9/11
Дата22.05.2017
Размер0.8 Mb.
Просмотров866
Скачиваний0
ТипМетодические указания
1   2   3   4   5   6   7   8   9   10   11

Термографическое копирование


Термокопирование — самый оперативный способ копирования (десятки метров в минуту), позволяющий получить копию на специальной, достаточно дорогой термореактивной бумаге или на обычной бумаге, но через термокопировальную бумагу.

Термографическое копирование заключается в следующем: на документ-оригинал накладывается полупрозрачная термореактивная бумага чувствительным слоем к оригиналу. Затем через эту бумагу документ освещается интенсивным потоком тепловых лучей. Темные участки оригинала поглощают лучи и нагреваются, а светлые участки отражают тепловые лучи и поэтому нагреваются существенно меньше. Таким образом, тепловой рельеф несет информацию об оригинале. Тепловой поток от документа-оригинала передается прижатой к нему термореактивной бумаге, которая темнеет тем больше, чем больше нагрет участок оригинала. Недостатки технологии термокопирования, связанные с невысоким качеством и малым сроком хранения копий, а также высокой стоимостью термореактивной бумаги, не способствуют ее широкому распространению.

Диазографическое копирование

Диазографичвское копирование (светокопирование) — диазография, синькография. Применяется преимущественно для копирования большеформатных чертежей и технической документации на крупных предприятиях. Оригинал выполняется на светопроницаемой бумаге, кальке.

Процесс копирования состоит в экспонировании контактным способом, т. е. в освещении прозрачного оригинала, наложенного на светочувствительную диазобумагу, на которой темнеют участки, соответствующие изображению на оригинале. Изображение проявляется полусухим способом в вытяжных шкафах в парах растворителя (аммиака) или мокрым способом в щелочном растворе.

В настоящее время метод диазографического копирования используется достаточно редко, поскольку качество получаемых копий, так называемых «синек», невысокое, а процедура получения копий трудоемка, малопроизводительна и экологически опасна для человека и окружающей среды вследствие использования химических веществ для проявления.

Фотографическое копирование


Фотографическое копирование (фотокопирование) — наиболее давний способ копирования, обеспечивающий самое высокое качество, но требующий дорогих расходных материалов (в частности, фотобумаги, содержащей соли серебра) и длительного процесса получения копии (экспозиция, проявление, закрепление, промывка, сушка).

В зависимости от требований к размерам и качеству изображения фотографическое копирование может быть контактным и проекционным. Проекционное фотокопирование обеспечивает более высокое качество копии и кроме того позволяет в широких пределах изменять масштаб изображения. Для фотокопирования используются различные репродукционные аппараты и фотоувеличительные установки.

Фотографическое копирование используется в тех случаях, когда другие способы не могут обеспечить требуемое качество. Наиболее актуальной областью применения фотографического копирования является микрофильмирование документов и библиотечных фондов

Электронографическое копирование

Электронографическое копирование (электроискровое копирование) основано на оптическом считывании документов и электроискровой регистрации информации на специальный носитель копии.

При электроискровом копировании фотодиоды преобразуют построчно проецируемое на них изображение документа в электрические сигналы, которые усиливаются и подаются на линейку пишущих игл. Между иглами и основанием аппарата (барабаном) проскакивают высоковольтные электрические разряды (искры), перфорирующие тончайшие отверстия в носителе копии в участках, которые соответствуют темным участкам оригинала.

Копии выполняются в основном на специальной пленке и на термореактивной бумаге. Копии на пленке служат основой для последующего тиражирования документов средствами трафаретной печати. Электронографическое копирование наиболее широко и эффективно используется при подготовке высококачественных трафаретных печатных форм.

Трафаретная и электронотрафаретная печать

Для получения большого количества одинаковых копий используются копировальные устройства трафаретной печати. В недалеком прошлом трафаретная печать осуществлялась ротаторами — устройствами, для которых предварительно готовился трафарет. Для этого на специальной бумаге из прочных волокон, покрытых тонким слоем воска, — «восковке» печатался на пишущей машинке текст. В местах удара символов машинки воск отскакивал, оставляя сетку волокон. Затем подготовленная «восковка»-трафарет вставлялась в ротатор, образуя кольцо. Внутри кольца находился валик, смачиваемый типографской краской, которая через участки «восковки» с поврежденным восковым слоем с помощью дополнительного валика переносилась на бумагу. Участки бумаги, соответствующие местам на «восковке», по которым ударяли символы пишущей машинки, окрашивались. На каждом обороте кольца «восковки» из ротатора появлялся лист копии. Расходные материалы и сам ротатор были доступны и недороги.

К достоинствам трафаретной печати ротаторами следует отнести хорошее качество печати; возможность получения 400— 1500 оттисков с одного трафарета; относительную простоту изготовления трафаретов. Однако при трафаретной печати невозможно выполнять редактирование и необходимо использование нескольких трафаретов при многоцветной печати.

Перспективный путь развития трафаретной печати, использующий последние достижения цифровой электроники и существенно улучшающий все характеристики трафаретной печати, связан с электронотрафаретной печатью. Поскольку в России электро-нотрафаретная печать производится в основном с помощью копировальных аппаратов производства фирмы Riso, часто этот способ размножения документов называют ризографией.

Ризографы (дубликаторы) — новый тип копировально-множительной техники для офиса, совмещающий традиционную трафаретную печать с современными цифровыми методами изготовления и обработки электронных документов. Ризограф, подключенный к компьютеру через параллельный порт, может быть использован для оперативного создания, редактирования и размножения любых видов документов и полиграфических изданий.

Ризограф был изобретен и создан в 1980 г. в Японии, а уже к началу 1995 г. более 70 % японских школ были оснащены ризографами. В России первые ризографы появились в 1992 г.

Процесс копирования на ризографе отличается высокой оперативностью и состоит из двух этапов: подготовки рабочей матрицы в течение 15 — 20 с и печати по матрице с высокой производительностью, обеспечивающей получение нескольких тысяч высококачественных оттисков за 10 — 20 мин.

При подготовке матрицы оригинал документа помещают на встроенный сканер, который считывает информацию, кодирует ее и создает соответствующий цифровой файл. После обработки специальной многослойной мастер-пленки термоголовкой, управляемой этим цифровым файлом, создается рабочая матрица, содержащая копируемое изображение или текст в виде микроотверстий во внешнем слое пленки. Затем рабочая матрица автоматически размещается на поверхности красящего цилиндра, внутри которого находится туба со специальным красителем. Краситель пропитывает внутренний слой пленки, и, таким образом, обработанная рабочая матрица используется как трафарет для тиражирования документа.

В процессе печати краситель из внутреннего слоя пленки под действием центробежной силы при вращении красящего цилиндра переносится через микроотверстия на лист обычной бумаги. С одной рабочей матрицы можно получить более 4000 оттисков без снижения качества.

В современных ризографах выполняются в автоматическом режиме не только все основные этапы, но даже отматывание с рулона отрезка мастер-пленки нужного размера, его отрезание, снятие с красящего барабана отработанной матрицы и ее удаление в приемник отработанных рабочих матриц.

К достоинствам ризографа следует отнести:

    • использование для копирования бумаги любого типа и качества (кроме мелованной и глянцевой) с плотностью от 46 до 210 г/м2; высокую производительность — первая копия получается через 20 — 30 с, последующий процесс копирования идет со скоростью 60—130 оттисков в минуту;

    • высокое разрешение: до 400 dpi (16 точек на миллиметр), в текстовом режиме до 16 оттенков, в фоторежиме отображение 256 оттенков и градаций яркости;

    • копирование многоцветных документов;

    • масштабирование;

    • совместную работу с ПК и, в частности, использование ПК для создания и редактирования документов;

    • автоматизацию всех процессов, удобство управления, наличие дисплея.

Особо следует отметить высокую экономичность тиражирования на ризографе документов: если стоимость получения 10 копий, например, на ризографе и ксероксе почти одинакова, то изготовление 500 оттисков на ризографе в 6 —8 раз дешевле.

Конструктивно ризографы выполняются в двух конфигурациях: роликовые и планшетные.

Роликовые, или протяжные, ризографы предназначены для работы только с отдельными листами, протягиванием их при считывании мимо фотоприемного устройства сканера, причем подача листов осуществляется в автоматическом режиме.

Планшетные ризографы позволяют копировать как листовые, так и сброшюрованные материалы.

Для более эффективного использования ризографы объединяют в единый комплекс технических средств информатизации.

При формировании комплекса ризограф подключают к компьютеру через параллельный порт, что позволяет превратить ризограф в высококачественный сканер с разрешающей способностью 400 dpi и дает возможность передать на компьютер изображение, отредактировать его, выбирая масштаб, и распечатать на ризографе. При подготовке документа с помощью любого текстового процессора можно распечатать его на ризографе со скоростью 130 копий в минуту.

Ризограф экологически безопасен, не требует специально подготовленных помещений и персонала, к работе готов сразу после подключения к сети.

Благодаря высокому качеству и удобной технологии, ризографический комплекс технических средств информатизации позволяет формировать и тиражировать информацию на твердых носителях начиная от визитных карточек, бланков, рекламных проспектов и технической документации и заканчивая журнальной периодикой, брошюрами и книгами.

Цифровые технологии копирования

Цифровые технологии копирования — самое современное направление получения копий. Многие фирмы, специализирующиеся в области копировальной техники, выпускают цифровые копировальные аппараты, в частности Xerox, Ricoh.

Цифровой копировальный аппарат включает в себя:

    • сканер для считывания документа-оригинала и получения с него электронной копии;

    • микропроцессор, обеспечивающий процедуры анализа, преобразования и редактирования копируемой информации;

    • запоминающие устройства: оперативное до 16 Мбайт и на магнитном диске до 1000 Мбайт;

    • дисплей;

    • лазерный принтер для получения копии документа электрографическим способом.

Например, электронные копиры фирмы HP OfficeJet 590 и Pro 1150C интегрированы с цветным струйным принтером, сканером и факсимильным аппаратом. Для более эффективного редактирования информации возможен интерфейс с компьютером.

Цифровые технологии копирования позволяют:

    • обеспечить высокую производительность копирования;

    • получать высокое качество копий — разрешение до 400 dpi (точек на дюйм) с передачей 256 оттенков цвета, в том числе и серого;

    • масштабировать документ при копировании;

    • выполнять копирование в разных режимах, например в режимах «текст» и «фото», оптимально ориентированных на копирование соответственно текстовых и полутоновых графических документов;

    • выполнять копирование в режиме «удаление фона», позволяющего удалять фон, который может появиться при копировании низкокачественных оригиналов;

    • обеспечивать поворот изображения на 90 и 180° при неправильной взаимной ориентации документа-оригинала и бумаги — носителя копии;

    • производить электронную подборку, сортировку и необходимое тиражирование копий;

выполнять автоматическое нанесение штампов и логотипов, автоматическую простановку даты, автоматическую нумерацию страниц.

При этом настройка и управление цифровых копировальных аппаратов не требуют специальной подготовки обслуживающего персонала.

Уничтожители документов — шреддеры

Шреддеры (to shredd — размельчать, кромсать) — устройства Информация, содержащаяся в документах на твердых носителях, часто носит конфиденциальный характер. Небрежно оставленные, даже в смятом или разорванном виде, документы служат потенциальным источником неприятностей. Попав в руки заинтересованных лиц, такие документы могут стать причиной серьезного морального или финансового ущерба. В связи с этим во многих солидных организациях действуют инструкции о порядке обращения со служебными материалами и защите информации в электронном виде, а также фиксированной на бумаге и иных носителях (микрофильмах, магнитной ленте и дискетах и т.д.). Вместе с тем в ряде фирм с большим документооборотом остро стоит проблема утилизации отходов делопроизводства в виде документов на твердых носителях. Таким образом, проблема уничтожения документов на твердых носителях актуальна для всех без исключения организаций: правительственных учреждений, финансовых и юридических структур, производственных и торговых предприятий, издательств, информационных и рекламных агентств. Существует три основных способа уничтожения документов: химический, термический и механический. Первые два связаны с определенными неудобствами и дополнительными финансовыми затратами на содержание отдельных помещений, оснащенных специальными системами фильтрации и вентиляции воздуха, противопожарной безопасности, специально подготовленного персонала, спецодежды. В связи с этим наибольшее распространение получил именно механический принцип «разрезания документов на части», реализуемый в шреддерах.

Современные уничтожители можно классифицировать по еледующим критериям:

  1. число пользователей и производительность — персональные (для применения непосредственно на рабочем месте);

  2. офисные (для коллективного пользования);

  3. промышленные (для централизованной обработки деловых бумаг, размельчения бумажно-картонной упаковки);

  4. вид резки — параллельный, измельчающий документы на полосы различной ширины;

  5. перекрестный, предполагающий одновременную продольно-поперечную резку документа на мелкие фрагменты;

  6. степень секретности (по международному стандарту DIN 32757):

1-й уровень — для документов общего содержания. Допускается ширина полосы не более 12 мм неограниченной длины. Площадь фрагмента не более 2000 мм2;

2-й уровень — для внутренних документов с ограниченным доступом (ДСП). Ширина полосы не более 6 мм с неограниченной длиной. Площадь фрагмента не более 800 мм2;

3-й уровень — для конфиденциальных документов. Полоса не шире 2 мм и площадь не более 594 мм2, либо полоса не шире 4 мм, длина не более 80 мм и площадь фрагмента не более 320 мм2;

4-й уровень — для секретных документов. Ширина полосы не более 2 мм, длина не более 15 мм, площадь фрагмента 30 мм2;

5-й уровень — для документов под грифом «совершенно секретно». Полоса не шире 0,8 мм, длина не более 13 мм, общая площадь фрагмента не более 10 мм2;

7. формат носителей информации — А4, В4, A3;

8. режим работы — повторно-кратковременный (непрерывная работа аппаратов в течение не более получаса с после дующим перерывом);

9. непрерывный (аппараты могут работать непрерывно неограниченное время).

Все шреддеры электромеханического типа содержат следующие основные узлы: механический привод, режущий механизм контейнеры для уничтожаемых документов и отходов в виде бумажных полос или брикетов.

Режущие механизмы электромеханических шреддеров подразделяются на две категории. Механизм первой категории имеет монолитные вращающиеся дисковые ножи с режущими кромками с обеих сторон, как это показано на рис. 9.5. Резка осуществляется благодаря плотно подогнанным друг к другу ножам без использования дополнительного прижимного механизма (как в случае механизма второй категории). Сами ножи изготовляются из высоколегированной стали (технология Золинген), что само по себе гарантирует их высокую прочность и износостойкость. Кроме того, первоначальная заточка зубьев осуществляется лазерным методом после закаливания стали. Это трудоемкий и дорогостоящий процесс, но именно благодаря ему гарантируется стабильная работа режущего механизма даже при попадании скрепок среди измельчаемых документов. Режущий механизм приводится в движение механизмом привода, который содержит двигатель и редуктор. Важнейшим преимуществом шреддеров с режущими механизмами первой категории является низкий уровень шума при работе.

Механизм второй категории оснащен монолитными вращающимися ножами, имеющими всего одну режущую кромку. Толщина режущей кромки ножа меньше 0,5 мм. Режущий механизм не содержит ножей очистки, что иногда влечет за собой заклинивание двигателя при реверсе

По назначению и конструктивному исполнению шреддеры подразделяются на персональные, офисные и промышленные.

Персональные шреддеры конструктивно выполняются с малообъемной корзиной или даже вовсе без корзины для уничтожаемой бумаги. В последнем случае можно использовать этот аппарат с любой корзиной или контейнером, куда может поступать уничтожаемый материал.

Сервисные функции персональных шреддеров обычно заключаются в автоматическом пуске/останове на основе механического или электронного датчика, световой индикации режимом работы и реверсе вращения ножей. Различные модели персональных шреддеров позволяют уничтожать документы второй —пятой степени секретности со скоростью, достигающей 90 мм/с, снабжаются корзиной для сбора уничтожаемого материала емкостью 16 — 29 л.

Офисные шреддеры позволяют уничтожать документы со скрепками, могут быть использованы для уничтожения пластиковых карт, CD-дисков и дискет за счет использования режущего механизма первой категории. Закрытый корпус этих шреддеров имеет дверцу, открывающую доступ к контейнеру для уничтоженных документов. Корпус передвигается на колесах. К дополнительным сервисным функциям офисных шреддеров относится автоматическая блокировка пуска при незакрытой двери. При работе с документами второй —пятой степеней секретности многочисленные модели офисных шреддеров имеют производительность 120 — 217 мм/с емкость корзины 215 л.
Вопросы для самоконтроля:


    1. Ксерокс: назначение, принцип действия, классификация;

    2. Конструктивные особенности и основные технические характеристики ксероксов;

    3. Ризограф: назначение, принцип действия, классификация;

    4. Конструктивные особенности и основные технические характеристики ризографа;

    5. Шреддер: назначение, принцип действия, классификация;

    6. Конструктивные особенности и основные технические характеристики шреддера.


Практическая работа 11. Ксерокс, ризограф
Студент должен:
иметь представление:

  • об устройствах вывод информации на печать


знать:

  • принцип работы ксерокса, ризографа;

  • основные узлы и особенности эксплуатации ксерокса, ризографа;

  • технические характеристики ксерокса, ризографа.


уметь:

  • подключать ксерокс, ризограф;

  • настраивать параметры работы ксерокса, ризографа;

  • производить замену картриджей.


Раздел 8. Устройства ввода информации
Тема 8.1 Клавиатура. Оптико- механические манипуляторы
Студент должен:
иметь представление:

  • об устройствах ввода информации


знать:

  • принцип действия клавиатуры;

  • принцип работы мыши, трекбола, джойстика;

  • принцип работы дигитайзера.


Клавиатура: принцип действия, конструктивные исполнения. Подключение клавиатуры. Драйвер клавиатуры. Настройка параметров работы клавиатуры.

Оптико- механические манипуляторы. Мышь: принцип действия, способы подключения, основные характеристики. Принципиальные схемы оптико- механической и оптической мыши. Драйвер мыши. Особенности инфракрасной и радиомыши. Настройка параметров работы мыши.

Джойстик, трекбол, дигитайзер. Их назначение, принцип действия, основные особенности, подключение.
Методические указания
Для обработки информации с помощью ПК пользователь должен ввести информацию в компьютер. Основными устройствами ввода данных и управления системой являются клавиатура, мышь, джойстик. Однако все большее распространение получают такие устройства ввода информации, как сканер, цифровая камера, дигитайзер.

Клавиатура (Keyboard) является основным устройством ввода информации в ПК, хотя мышь все больше берет на себя выполнение функций управления.

Основным элементом клавиатуры являются клавиши. Сигнал при нажатии клавиши регистрируется контроллером клавиатуры и передается в виде так называемого скэн-кода на материнскую плату. Скэн-код — это однобайтовое число, младшие 7 бит которого представляют идентификационный номер, присвоенный каждой клавише. На материнской плате ПК для подключения клавиатуры также используется специальный контроллер.

Когда скэн-код поступает в контроллер клавиатуры, инициализируется аппаратное прерывание, процессор прекращает свою работу и выполняет процедуру, анализирующую скэн-код. Скэн-код трансформируется в код символа (так называемые коды ASCII). При этом обрабатывающая процедура сначала определяет установку клавишей и переключателей, чтобы правильно получить вводимый код (например, «ф» или «Ф»). Затем введенный код помещается в буфер клавиатуры, представляющий собой область памяти, способную запомнить до 15 вводимых символов. Контроллер клавиатуры выполняет функции самоконтроля в процессе загрузки системы. Процесс самоконтроля при загрузке отображается однократным миганием трех индикаторов клавиатуры.

По конструктивному исполнению клавиатуры подразделяются па клавиатуры с пластмассовыми штырями, со щелчком, с микропереключателями и сенсорные.

Клавиатуры с пластмассовыми штырями выполняются таким образом, что под каждой клавишей находится пластмассовый штырь, установленный вертикально, нижний конец которого выполнен в виде штемпеля (клейма), изготовленного из композицир резины с металлом. Ниже этого резинового штемпеля находится пластина с контактными площадками, неподвижно установленная на корпусе панели. При нажатии клавиши штемпель соприкасается с контактными площадками, замыкается электрическая цепь, что воспринимается контроллером клавиатуры. Недостатком такой клавиатуры является высокая чувствительность клавиши к вибрации при нажатии, что приводит к многократному отображению символа на экране при печати с высокой скоростью.

Клавиатура со щелчком выполнена так, что при нажатии клавиши ее механическое сопротивление становится тем больше, чем глубже она нажимается. Для преодоления этого сопротивления необходимо затратить определенную силу, после чего клавиша нажимается легко. Нажатие и отпускание клавиши сопровождается щелчком, отсюда и название. Клавиатуры со щелчком позволяют обеспечить уверенность в том, что клавиша нажата, а это повышает скорость ввода информации.

Клавиатуры с микропереключателями имеют характеристик аналогичные клавиатурам со щелчком. Но микропереключателе в том числе герконы (герметические контакты), характеризуются большей прочностью и длительным сроком службы.

Клавиатуры с герконами содержат переключатели клавишей с пружинными контактами из ферромагнитного материала, помещенными в герметизированный стеклянный баллон. Контакты приходят в соприкосновение (или размыкаются) под действием магнитного поля электромагнита, установленного снаружи баллона.

Принцип действия сенсорной клавиатуры основан на усилении разности потенциалов, приложенной к чувствительному элементу. Количество этих элементов соответствует количеству клавишей. В качестве чувствительных элементов используются токопроводящие контактные площадки в виде, например, одного или двух прямоугольников, разделенных небольшим зазором. В момент касания пальцем контактных площадок статический потенциал усиливается специальной схемой, на выходе которой формируется сигнал, аналогичный сигналу, возникающему при нажатии клавиши обычной механической клавиатуры. Сенсорные клавиатуры самые долговечные, поскольку в них отсутствуют какие-либо механические элементы и информация о нажатии «клавиши» формируется только электроникой.

Драйвер клавиатуры служит для отображения на экране набранного на клавиатуре и обычно является составной частью любой операционной системы. Драйвер клавиатуры операционной системы MS-DOS называется KEYB.COM. После установки операционной системы DOS он находится, как правило, в директории DOS. При установке операционной среды Windows 95/98 драйвер клавиатуры автоматически записывается в стартовом файле AUTOEXEC.BAT.

Со времени появления первого персонального компьютера вплоть до 1995 г. внешний вид и структура клавиатуры оставались неизменными. Но в 1995 г., после выхода операционной системы Windows 95, привычные 101-клавишные устройства были заменены клавиатурами со 104/105 клавишами. Клавиши были добавлены, чтобы реализовать некоторые возможности новой операционной системы.

Большинство современных клавиатур снабжено тремя специальными клавишами, предназначенными для работы в операционной системе Windows 95/98/ME; они расположены в нижней части клавиатуры, рядом с клавишами Ctrl и Alt.

Еще ряд изменений был связан с эргономическими показателями, т.е. с необходимостью соответствия новых клавиатур современным требованиям медицины. Было установлено, что при ежедневной интенсивной работе со старыми плоскими клавиатурами у операторов ЭВМ развивается профессиональное заболевание кистей рук. Поэтому на рынке появилось множество новых «эргономических» клавиатур самых причудливых форм: как бы «разломанных» надвое, изогнутых, снабженных подставками для кистей рук. Все более популярными становятся клавиатуры на ИК-луча не требующие шнура для подключения к системному блоку. Передача сигналов с такой клавиатуры осуществляется по принципе аналогичному «дистанционному управлению».

Наибольшим успехом на российском рынке пользуются клавиатуры таких производителей, как Microsoft, Cherry и ВТС.

Мышь

Мышь, как и клавиатура, является важнейшим средством вводя информации. Особенно возросла ее роль с появлением графический оболочек, поскольку мышь стала необходимой для эффективной работы на ПК с соответствующим программным обеспечением.

Важное преимущество графических оболочек — возможности инициализации многих команд без длительного ввода их с клавиатуры. Управление с помощью несложных процедур: выбор, щелчок (или двойной щелчок) на объекте в виде пиктограммы, символа или пункта меню — зачастую позволяет обходиться без использования клавиатуры.

Мышь как датчик перемещения была изобретена в 1968 г. Но неотъемлемой составляющей компьютера Apple Macintosh она стала в конце 1970-х гг., поскольку именно этот компьютер был укомплектован полно цветным графичееским интерфейсом, где пользователь отдавал команды, щелкай мышью по значкам-пиктограммам. Поскольку ПК получил такой интерфейс позже, мышь в составе ПК появилась только в середине 1980-х гг. По принципу действия мыши подразделяются на оптико-механические и оптические.

Оптико-механическая мышь состоит из следующих основных элементов. В нижней плоскости корпуса мыши находится отверстие, которое открывается поворотом пластмассовой шайбы. Под шайбой находится шарик диаметром 1,5 — 2 см, изготовленный из металла с резиновым покрытием. В непосредственной контакте с шариком находятся валики. Причем только один из валиков служит для управления шариком, а два других валика регистрируют механические передвижения мыши. При перемещении мыши по коврику шарик приходит в движение и вращает соприкасающиеся с ним валики. Оси вращения валиков взаимно перпендикулярны. На этих осях установлены диски с прорезями которые вращаются между двумя пластмассовыми цоколями. На одном цоколе находится источник света, а на другом — фоточувствительный элемент (фотодиод, фоторезистор или фототранзистор). С помощью такого фотодатчика растрового типа точно определяется относительное перемещение мыши. С помощью двух разных датчиков определяется направление перемещения мыши последовательности освещения фоточувствительных элементов и скорость перемещения в зависимости от частоты импульсов. Импульсы с выхода фоточувствительных элементов при работе микроконтроллера преобразуются в совместимые с ПК дан и передаются на материнскую плату.

Оптическая мышь функционирует аналогично оптико-механической мыши, отличаясь тем, что ее перемещение регистрируется оптическим датчиком. Такой способ регистрации перемещения заключается в том, что оптическая мышь посылает луч на специальный коврик. Отраженный от коврика луч поступает на оптоэлектронное устройство, расположенное в корпусе мыши, Направление движения мыши определяется типом полученного сигнала. Преимуществами оптической мыши являются высокая точность определения позиционирования и надежность.

По принципу подключения к компьютеру мыши можно подразделить на проводные, связанные с компьютером электрическим кабелем («хвостатые» мыши), и бесконтактные (беспроводные, «бесхвостые»). Беспроводные мыши — это инфракрасные или радиомыши.

Инфракрасная мышь функционирует аналогично пульту дистанционного управления телевизора. Для этого рядом с компьютером или на самом компьютере устанавливается приемник инфракрасного излучения, который кабелем соединен с ПК. Движение мыши регистрируется рассмотренными выше механизмами и преобразуется в инфракрасный сигнал, который затем передается на приемник. Преимущество использования инфракрасной мыши заключается в отсутствии дополнительного кабеля на рабочем столе. Однако для передачи инфракрасного сигнала пространство между передатчиком мыши и приемником компьютера не должно перекрываться, иначе мышь будет не в состоянии передать сигнал на ПК. Инфракрасные мыши работают от аккумулятора или обычной батарейки.

Радиомышь обеспечивает передачу информации от мыши с помощью радиосигнала. При этом нет необходимости в свободном пространстве между приемником и передатчиком. Радиомышь передает данные с помощью радиоволн на небольшой приемник, который подключен к разъему СОМ или PS/2. Расстояние от приемника до мыши может составлять до 1,5 м. Питание радиомьши осуществляется от батареек в ее корпусе.

Для нормального функционирования мыши необходимо обеспечить ее свободное перемещение по плоской поверхности, в качестве которой обычно применяются специальные коврики (Mousi Pad). Однако выпускаются мыши, свободно работающие на любой поверхности. Устройствами ввода сигнала мыши являются кнопки, расположенные на ней. В зависимости от модели мыши на ней имеется от двух до четырех кнопок.

Функциональное назначение кнопок мыши различно и зависит от выполняемого приложения. Помимо кнопок многие мыши оборудованы специальными устройствами для быстрой прокрутки (скроллинга) окон. Наиболее удобным и простым является скроллинг с помощью колес, которым обеспечиваются отдельные модели.

Мыши подразделяются по способу подключения к ПК: подключаемые к СОМ-порту (Serial Mouse — последовательный мыши), подключаемые к PS/2 (PS/2-мыши) и мыши, подключаемые к порту USB. Комбинированные мыши можно подключать как к порту PS/2, так и к порту СОМ.

Наряду с эргономическими клавиатурами на компьютерном рынке появились эргономические, причудливо изогнутые мыши, форма которых призвана снизить нагрузку на кисть пользователя.

Основными производителями мышей являются компании Microsoft, Mitsumi, A4Tech, Logitech и KEY Systems (торговая марка мышей Genius).

Трэкбол (Trackball) по конструкции напоминает мышь, у которой шар расположен не внутри корпуса, а на верхней его части. Принцип действия и способ передачи данных трэкбола такой же, как у мыши. Обычно трэкбол использует оптико-механический принцип регистрации положения шарика. Большинство трэкболов управляются через последовательный порт, причем назначение выводов аналогично разъему мыши. Основные отличия трэкбола от мыши в том, что трэкбол обладает стабильностью за счет тяжелого корпуса и не требует специальной площадки для движения. Для пользователей ПК типа Notebook и Laptop имеются встроенные или подключаемые трэкболы.

Джойстик — незаменимое устройство ввода в области компьютерных игр.

Создавался джойстик для использования на специальных военных тренажерах и обычно имитировал устройство управления какой-либо военной техникой.

Цифровые джойстики, как правило, применяются в игровых приставках и в игровых компьютерах.

Любой джойстик состоит из двух элементов: координатной части— ручки или руля, перемещение которой меняет положение виртуального объекта в пространстве, и функциональных кнопок. Число кнопок может быть от трех до восьми, и большинству из них, громе главной кнопки «Огонь» или гашетки, можно в зависимости от игры присваивать разные значения: смена оружия.

Для ПК в качестве устройства ввода (управления) в основном применяются аналоговые джойстики. Использование цифрового джойстика требует установки в компьютер специальной платы или применения переходника с одного разъема на другой. Аналоговый джойстик имеет существенное преимущество перед цифровым. Цифровой джойстик реагирует в основном на положение управляющей ручки (влево, вправо, вверх, вниз) и стартовой кнопки «огонь». Аналоговые джойстики регистрируют минимальные движения ручки управления, что обеспечивает более точное управление.

Новые модели дорогих джойстиков имеют своеобразную «o6ратную связь»: при использовании их для «стрельбы» ручка дает эффект «отдачи», какая бывает у настоящего оружия. Некоторые модели обладают ощутимым сопротивлением, имитирующим управление настоящим летательным аппаратом и позволяющим 6oлее точно регулировать перемещение виртуального объекта.

Лидерами рынка джойстиков в России являются фирмы Quick Shot и Genius.
Вопросы для самоконтроля:


    1. Клавиатура: принцип действия, конструктивные исполнения;

    2. Подключение клавиатуры;

    3. Драйвер клавиатуры. Настройка параметров работы клавиатуры;

    4. Оптико- механические манипуляторы;

    5. Мышь: принцип действия, способы подключения, основные характеристики;

    6. Принципиальные схемы оптико- механической и оптической мыши;

    7. Драйвер мыши;

    8. Особенности инфракрасной и радиомыши. Настройка параметров работы мыши;

    9. Джойстик, трекбол, дигитайзер. Их назначение, принцип действия, основные особенности, подключение.




Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   11


База данных защищена авторским правом ©nethash.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал