Лекция История развития компьютерного моделирования



Pdf просмотр
страница1/22
Дата14.02.2017
Размер1.74 Mb.
Просмотров3766
Скачиваний2
ТипЛекция
  1   2   3   4   5   6   7   8   9   ...   22

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
Сибирский Федеральный Университет
Содержание курса лекций
Лекция 1.
История развития компьютерного моделирования
Лекция 2. Понятие математической модели
Лекция 3. Классификация математических моделей
Лекция 4. Построение математических моделей
Лекция 5. Методы исследования математических моделей
Лекция 6. Вычислительный эксперимент
Лекция 7. Представление о языках программирования высокого уровня
Лекция 8. Инструментальные среды и пакеты прикладных программ
Лекция 9. Численные методы
Лекция 10. Численные методы решения систем дифференциальных уравнений
Лекция 11. Методика проведения исследований
Лекция 12. Методы построения и анализа дискретных моделей
Лекция 13. Моделирование колебательных процессов
Лекция 14. Моделирование распространения тепла в стержне
Лекция 15. Моделирование распространения тепла в пространстве
Лекция 16. Обобщённые криволинейные координаты
Лекция 17. Методы построения расчётных сеток для обобщённых криволинейных координат
Лекция 18. Моделирование движения жидкости. Основные уравнения
Лекция 19. Моделирование фильтрации несжимаемой жидкости
Лекция 20. Задача о движении грунтовых вод. Уравнение Буссинеска
Лекция 21. Методы расчёта уравнений в переменных вихрь – функция тока

2
Лекция 22. Методы расчёта уравнений в переменных давление-скорость
Лекция 23. Моделирование неустановившихся течений воды в системах речных русел и каналов
Лекция 24. Уравнения Сен-Венана. Численные методы решения
Лекция 25. Теория упругости. Закон Гука
Лекция 26. Моделирование упругой деформации однородной балки
Лекция 27. Модели частиц в задачах взаимодействия N тел
Лекция 28. Движение гранулированной среды
Лекция 29. Метод вихрей в ячейках для моделирования несжимаемой жидкости
Лекция 30. Моделирование электростатической плазмы
Лекция 31. Классификация биологических моделей
Лекция 32. Модели биологических систем, описываемые одним дифференциальным уравнением
Лекция 33. Модели роста популяции. Модель Мальтуса
Лекция 34. Модели биологических систем, описываемые двумя дифференциальными уравнениями. Модели взаимодействия двух видов
Лекция 35. Гипотезы Вольтера. Модель хищник – жертва
Лекция 36. Классификация экономических моделей. Особенности применения метода математического моделирования в социапьно- экономических исследованиях
Лекция 37. Модель рекламной компании
Лекция 38. Модель равновесия рыночной экономики. Модель экономического роста

3
Лекция 1.
История развития компьютерного моделирования

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его «образом» - математической моделью - и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот «третий метод» познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом
(явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). В то же время вычислительные (компьютерные, симуляционные, имитационные) эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам (преимущества эксперимента).
Неудивительно, что методология математического моделирования бурно развивается, охватывая все новые сферы — от разработки технических систем и управления ими до анализа сложнейших экономических и социальных процессов.
Элементы математического моделирования использовались с самого начала появления точных наук, и не случайно, что некоторые методы вычислений носят имена таких корифеев науки, как Ньютон и Эйлер, а слово
«алгоритм» происходит от имени средневекового арабского ученого Аль-
Хорезми. Второе «рождение» этой методологии пришлось на конец 40-х - начало 50-х годов XX века и было обусловлено по крайней мере двумя причинами. Первая из них - появление ЭВМ (компьютеров), хотя и скромных по нынешним меркам, но тем не менее избавивших ученых от огромной по объему рутинной вычислительной работы. Вторая - беспрецедентный социальный заказ - выполнение национальных программ СССР и США по созданию ракетно-ядерного щита, которые не могли быть реализованы традиционными методами. Математическое моделирование справилось с этой задачей: ядерные взрывы и полеты ракет и спутников были предварительно «осуществлены» в недрах ЭВМ с помощью математических

4
моделей и лишь затем претворены на практике. Эффективные численные методы и программы, разработанные для многих классов задач, позволили уже на ЭВМ второго поколения решить многие практически важные задачи.
Этот успех во многом определил дальнейшие достижения методологии, без применения которой в развитых странах ни один крупномасштабный технологический, экологический или экономический проект теперь всерьез не рассматривается (сказанное справедливо и по отношению к некоторым социально-политическим проектам).
Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, «встраиваясь» в структуры так называемого информационного общества. Впечатляющий прогресс средств переработки, передачи и хранения информации отвечает мировым тенденциям к усложнению и взаимному проникновению различных сфер человеческой деятельности. Без владения информационными «ресурсами» нельзя и думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед мировым сообществом. Однако информация как таковая зачастую мало что дает для анализа и прогноза, для принятия решений и контроля за их исполнением. Нужны надежные способы переработки информационного «сырья» в готовый «продукт», т. е. в точное знание. История методологии математического моделирования убеждает: она может и должна быть интеллектуальным ядром информационных технологий, всего процесса информатизации общества. Технические, экологические, экономические и иные системы, изучаемые современной наукой, больше не поддаются исследованию (в нужной полноте и точности) обычными теоретическими методами. Прямой натурный эксперимент над ними долог, дорог, часто либо опасен, либо попросту невозможен, так как многие из этих систем существуют в «единственном экземпляре». Цена ошибок и просчетов в обращении с ними недопустимо высока. Поэтому математическое (шире - информационное) моделирование является неизбежной составляющей научно-технического прогресса.
Наиболее впечатляющие успехи достигнуты при применении математического моделирования в инженерии и технологии. В настоящее время отмечается все возрастающий уровень математизации химии.
Например, химическая кинетика базируется на системах обыкновенных

5
дифференциальных уравнений, химическая гидродинамика - на уравнениях в частных производных и т.д.
Повышается и уровень математизации биологии. В этой связи достаточно сослаться на классические работы
В.Вольтерра по моделированию системы хищник - жертва, выполненные еще в начале двадцатого века.
Мы являемся свидетелями все более широкого использования математических идей в экономике, истории и других гуманитарных науках.
Процесс математизации наук идет чрезвычайно быстро благодаря опыту, накопленному при математизации механики и физики, благодаря достигнутому уровню развития самой математики.

6
Лекция 2. Понятие математической модели
Под математическим моделированием, в узком смысле слова, понимают описание в виде уравнений и неравенств реальных физических, химических, технологических, биологических, экономических и других процессов. Для того чтобы использовать математические методы для анализа и синтеза различных процессов, необходимо уметь описать эти процессы на языке математики, то есть описать в виде системы уравнений и неравенств.
Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы – единый сквозной цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях.
Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений (в первую очередь это относится к моделированию экономических систем).
По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими.
Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач.
Математическая модель может возникнуть тремя путями:
1. В результате прямого изучения реального процесса. Такие модели называются феноменологическими.
2. В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.

7 3. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей.
Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает основные качественные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление.
Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным.
Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации. Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер.
Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики.
Схема построения математических моделей следующая:
1. Выделение параметра или функции, подлежащей исследованию.
2. Выбор закона, которому подчиняется эта величина.
3. Выбор области, в которой требуется изучить данное явление.
В практике математического моделирования исходным пунктом часто является некоторая эмпирическая ситуация, выдвигающая перед исследователем задачу, на которую требуется найти ответ. Прежде всего, необходимо установить, в чём именно заключается задача. Часто (но не всегда) параллельно с этой стадией постановки задачи идёт процесс выявления основных или существенных особенностей явления (слайд 1.1). В частности для физических явлений этот процесс схематизации или идеализации играет решающую роль поскольку в реальном явлении участвует множество процессов и оно чрезвычайно сложно. Некоторые черты явления представляются важными многие другие - несущественными.
Возьмём к примеру движение маятника, образованного тяжёлым грузом, подмешанным на конце нити. В этом случае существенным является регулярный характер колебаний маятника, а несущественным – то, что нить

8
белая, а груз чёрный. После того как существенные факторы выявлены, следующий шаг состоит в переводе этих факторов на язык математических понятий и величин и постулировании соотношений между этими величинами. После построения модели её следует подвергнуть проверке.
Адекватность модели до некоторой степени проверяется обычно в ходе постановки задачи. Уравнения или другие математические соотношения, сформулированные в модели, постоянно сопоставляются с исходной ситуацией. Существует несколько аспектов проверки адекватности. Во- первых, сама математическая основа модели (которая и составляет её существо) должна быть непротиворечивой и подчиняться всем обычным законам математической логики. Во-вторых, справедливость модели зависит от её способности адекватно описывать исходную ситуацию. Модель можно заставить отражать действительность, однако она не есть сама действительность.
Ситуации моделируют для разных целей. Главная из них – необходимость предсказывать новые результаты или новые свойства явления. Эти предсказания могут быть связаны с распространением существующих результатов или иметь более принципиальный характер.
Часто они относятся к условиям, которые, по всей вероятности, будут иметь место в некоторый момент в будущем. С другой стороны, предсказания могут относится к событиям, непосредственное экспериментальное исследование которых неосуществимо. Наиболее важный пример такого рода дают многочисленные прогнозы, которые делались на основе математических моделей в программе космических исследований. Однако для этой цели моделируются не все ситуации: в некоторых случаях достаточно уметь описывать математическими средствами работу системы для того, чтобы добиться более глубокого понимания явления (именно эту роль и играют многие выдающиеся физические теории, хотя на их основе делаются также и прогнозы). Обычно при таком математическом описании не учитывается элемент контроля, однако в моделях, построенных, например, для исследования работы сетей, таких как схемы движения поездов или самолётов, контроль часто является важным фактором.
Математическая модель представляет собой упрощение реальной ситуации. Ощутимое упрощение наступает тогда, когда несущественные особенности ситуации отбрасываются и сложная исходная задача сводится к

9
идеализированной задаче, поддающейся математическому анализу. Именно при таком подходе в классической прикладной механике возникли блоки без трения, невесомые нерастяжимые нити, невязкие жидкости, абсолютно твёрдые или чёрные тела и прочие подобные идеализированные модели. Эти понятия не существуют в реальной действительности, они являются абстракциями, составной частью идеализации, предпринятой автором модели. И тем не менее их часто можно с успехом считать хорошим приближением к реальным ситуациям. Описанный образ действий при построении математических моделей не является единственным, и этому совсем не стоит удивляться. В другом возможном подходе первым шагом является построение простой модели нескольких наиболее характерных особенностей явления. Это часто делается для того, чтобы почувствовать данную задачу, причём делается это ещё до того, как сама задача окончательно сформулирована. Затем эта модель обобщается, чтобы охватить другие факты, пока не будет найдено приемлемое или адекватное решение. Есть ещё подход, когда с самого начала вводится в рассмотрение одновременно большое число факторов. Он часто применяется в исследовании операций, и такие модели обычно изучают имитационными методами с использованием ЭВМ.
Важнейшее решение, которое часто принимается в самом начале процесса моделирования, касается природы рассматриваемых математических переменных. По существу они делятся на два класса. В один из них входят известные характеристики, т.е. величины, поддающиеся (по крайней мере теоретически) точному измерению и управлению. Такие переменные называются детерминированными переменными. В другой класс входят неизвестные характеристики, т.е. величины, которые никогда не могут быть точно измерены и имеют случайный характер – они называются
стохастическими переменными. Модель, содержащая стохастические переменные, должна по определению описываться математическим аппаратом теории вероятностей и статистики. Детерминированные переменные часто, но не всегда требуют привлечения обычного математического анализа. Природа некоторых ситуаций бывает ясна не сразу, другие ситуации характеризуются переменными обоих типов. Для построения модели чрезвычайно важно, чтобы природа переменных была правильно представлена.

10
Лекция 3. Классификация математических моделей
Существуют всевозможные классификации математических моделей.
Выделяют линейные и нелинейные модели, стационарные и динамические, модели, описываемые алгебраическими, интегральными и дифференциальными уравнениями, уравнениями в частных производных.
Можно выделять классы детерминируемых моделей, вся информация в которых является полностью определяемой, и стохастических моделей, то есть зависящих от случайных величин и функций. Так же математические модели различают по применению к различным отраслям науки.
Рассмотрим следующую классификацию математических моделей. Все математические модели разобьем условно на четыре группы.
I. Модели прогноза или расчетные модели без управления. Их можно разделить на стационарные и динамические. Основное назначение этих моделей: зная начальное состояние и информацию о поведение на границе, дать прогноз о поведении системы во времени и в пространстве. Такие модели могут быть и стохастическими. Как правило, модели прогнозирования описываются алгебраическими, трансцендентными, дифференциальными, интегральными, интегро-дифференциальными уравнениями и неравенствами. Примерами могут служить модели распределения тепла, электрического поля, химической кинетики, гидродинамики.
II. Оптимизационные модели. Их так же разбивают на стационарные и динамические.
Стационарные модели используются на уровне проектирования различных технологических систем. Динамические – как на уровне проектирования, так и, главным образом, для оптимального управления различными процессами – технологическими, экономическими и

11
др. В задачах оптимизации имеется два направления. К первому относятся детерминированные задачи. Вся входная информация в них является полностью определяемой. Второе направление относится к стохастическим процессам. В этих задачах некоторые параметры носят случайный характер или содержат элемент неопределенности. Многие задачи оптимизации автоматических устройств, например, содержат параметры в виде случайных помех с некоторыми вероятностными характеристиками.
Методы отыскания экстремума функции многих переменных с различными ограничениями часто называются методами математического программирования. Задачи математического программирования – одни из важных оптимизационных задач.
В математическом программировании выделяются следующие основные разделы:
1) Линейное программирование. Целевая функция линейна, а множество, на котором ищется экстремум целевой функции, задается системой линейных равенств и неравенств.
2) Нелинейное программирование. Целевая функция нелинейная и нелинейные ограничения.
3) Выпуклое программирование. Целевая функция выпуклая и выпуклое множество, на котором решается экстремальная задача.
4) Квадратичное программирование. Целевая функция квадратичная, а ограничения – линейные равенства и неравенства.
5) Многоэкстремальные задачи. Задачи, в которых целевая функция имеет несколько локальных экстремумов. Такие задачи представляются весьма проблемными.
6) Целочисленное программирование. В подобных задачах на переменные накладываются условия целочисленности.

12
Как правило, к задачам математического программирования неприменимы методы классического анализа для отыскания экстремума функции нескольких переменных.
Модели теории оптимального управления – одни из важных в оптимизационных моделях.
Математическая теория оптимального управления относится к одной из теорий, имеющих важные практические применения, в основном, для оптимального управления процессами.
Различают три вида математических моделей теории оптимального управления. К первому виду относятся дискретные модели оптимального управления. Традиционно такие модели называют моделями динамического программирования.
Широко известен метод динамического программирования Беллмана. Ко второму типу относятся модели, описываемые задачам Коши для систем обыкновенных дифференциальных уравнений. Их часто называют моделями оптимального управления системами с сосредоточенными параметрами. Третий вид моделей описывается краевыми задачами, как для обыкновенных дифференциальных уравнений, так и для уравнений в частных производных. Такие модели называют моделями оптимального управления системами с распределенными параметрами.
III. Кибернетические модели. Этот тип моделей используется для анализа конфликтных ситуаций.
Предполагается, что динамический процесс определяется несколькими субъектами, в распоряжении которых имеется несколько управляющих параметров. С кибернетической системой ассоциируется целая группа субъектов со своими собственными интересами.
IV. Вышеописанные типы моделей не охватывают большого числа различных ситуаций, таких, которые могут быть полностью формализированы. Для изучения таких процессов необходимо включение в

13
математическую модель функционирующего «биологического» звена – человека. В таких ситуациях используется имитационное моделирование, а также методы экспертиз и информационных процедур.

14
Лекция 4. Построение математических моделей
Математические модели в количественной форме, с помощью логико- математических конструкций, описывает основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи. Для построения математической модели необходимо тщательно проанализировать реальный объект или процесс
1. выделить его наиболее существенные черты и свойства;
2. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
3. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений
(уравнения, равенства, неравенства, логико- математические конструкций);
4. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
5. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.
Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:
1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
3. корректировка модели;
4. использование модели.
Математическое описание исследуемых процессов и систем зависит от:
1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.
2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

15
На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса.
При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.
Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации она является приближенным описанием объекта.
Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.
Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.
Рассмотрим пример: исследование движения кривошипно-шатунного механизма (слайд 1.2). Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:
1. Заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями;
2. Пользуясь этой схемой, мы выводим уравнение движения механизма;
3. Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения
1-го и 2-го порядка.
Запишем эти уравнения:
2 1 cos sin
2
c
S
λ
γ
ϕ
ϕ


=

+




, sin sin 2 2
c
d
V
dt
ϕ
λ
γ
ϕ
ϕ

⎞⎛

=
+

⎟⎜


⎠⎝

,

16
(
)
2 2
cos cos 2
c
d
A
dt
ϕ
γ
ϕ λ
ϕ


=
+




, где С
0
– крайнее правое положение ползуна С, r – радиус кривошипа AB , l – длина шатуна BC,
ϕ – угол поворота кривошипа , λ=r/l.
Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно- шатунного механизма, основанную на следующих упрощающих предположениях:
1. нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун – это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;
2. при построении математической модели движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела – упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;
3. мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.
Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимую задачу.
Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.
Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при

17
построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.
Рассмотрим некоторые общие подходы к построению простейших математических моделей, демонстрирующие применение фундаментальных законов природы, вариационных принципов, аналогий, иерархических цепочек.
1.Фундаментальные законы природы.
Наиболее распространенный метод построения моделей состоит в применении фундаментальных законов природы к конкретной ситуации. Эти законы общепризнаны, многократно подтверждены опытом, служат основой множества научно-технических достижений. Поэтому их обоснованность не вызывает сомнений. На первый план выдвигаются вопросы, связанные с тем, какой закон (законы) следует применять в данном случае и как это делать. а) Сохранение энергии. Этот закон известен почти двести лет и занимает, пожалуй, наиболее почетное место среди великих законов природы.
Рассмотрим задачу о столкновении пули с маятником, подвешенным на легком жестком и свободно вращающемся стержне (слайд 1.3). Пуля, застрявшая в грузе, сообщит системе «пуля - груз» свою кинетическую энергию, которая в момент наибольшего отклонения стержня от вертикали полностью перейдет в потенциальную энергию системы. Эти трансформации описываются цепочкой равенств
(
) (
) (
)
2 2
1 cos
2 2
mv
V
M m
M m gl
=
+
+

α

Здесь mv
2
/2 — кинетическая энергия пули массы m, имеющей скорость v, М - масса груза, V — скорость системы «пуля—груз» сразу после столкновения,

18
g - ускорение свободного падения, l - длина стержня,
α - угол наибольшего отклонения. Искомая скорость определяется формулой
(
) (
)
2 1 cos
M m gl
v
m
+

=
α
, которая будет вполне точной, если не учитываемые нами потери энергии на разогрев пули и груза, на преодоление сопротивления воздуха, разгон стержня и т. д. невелики. Это, на первый взгляд, разумное рассуждение на самом деле неверно. Процессы, происходящие при «слипании» пули и маятника, уже не являются чисто механическими. Поэтому примененный для вычисления величины V закон сохранения механической энергии несправедлив: сохраняется полная, а не механическая энергия системы. Он дает лишь нижнюю границу для оценки скорости пули. б) Сохранение материи. в) Сохранение импульса.
2. Вариационные принципы.
Еще один подход к построению моделей, по своей широте и универсальности сопоставимый с возможностями, даваемыми фундаментальными законами, состоит в применении так называемых вариационных принципов. Они представляют собой весьма общие утверждения о рассматриваемом объекте (системе, явлении) и гласят, что из всех возможных вариантов его поведения (движения, эволюции) выбираются лишь те, которые удовлетворяют определенному условию. Обычно согласно этому условию некоторая связанная с объектом величина достигает экстремального значения при его переходе из одного состояния в другое.
Рассмотрим преломление лучей на границе двух сред (слайд 1.4). Свет, выходящий из точки А, движется в первой среде со скоростью v
a
преломляется и, переходя через линию раздела, двигается во второй среде со скоростью v
b
и попадает в точку В. Если
α - угол падения луча, а β(α) - угол его преломления, то время прохождения из А в В равно

19
( )
( )
sin sin
a
b
a
b
t
v
v
=
+
α
α
β α

Из условия минимальности t(
α) следует известный закон преломления света: cos cos
a
b
v
v
=
α
β

3. Применение аналогий при построении моделей.
Во многих случаях при попытке построить модель какого-либо объекта либо невозможно прямо указать фундаментальные законы или вариационные принципы, которым он подчиняется. Одним из плодотворных подходов к такого рода объектам является использование аналогий с уже изученными явлениями. Что, казалось бы, общего между радиоактивным распадом и динамикой популяций, в частности изменением численности населения нашей планеты? Однако на простейшем уровне такая аналогия вполне допустима, о чем свидетельствует одна из простейших моделей популяций, называемая моделью Мальтуса. В ее основу положено простое утверждение - скорость изменения населения со временем t пропорциональна его текущей численности N(t), умноженной на сумму коэффициентов рождаемости
α(t)≥0 и смертности
β≤0. В результате приходим к уравнению
( )
( )
( )
(
)
( )
dN t
t
t N t
dt
=

α
β
, весьма похожему на уравнение радиоактивного распада.
4. Иерархический подход к получению моделей.
В редких случаях бывает удобным и оправданным построение математических моделей даже относительно простых объектов сразу во всей полноте, с учетом всех факторов, существенных для его поведения. Поэтому естествен подход, реализующий принцип «от простого - к сложному», когда следующий шаг делается после достаточно подробного изучения не очень сложной модели. При этом возникает цепочка (иерархия) все более полных

20
моделей, каждая из которых обобщает предыдущие, включая их в качестве частного случая.
Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.
Построение математической модели в прикладных задачах – один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области, знанием
ЭВМ и программирования.

21


Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   22


База данных защищена авторским правом ©nethash.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал