Функциональные части компьютера, история развития, базовая конфигурация



Скачать 212.48 Kb.
Дата27.10.2016
Размер212.48 Kb.
Просмотров128
Скачиваний0
Федеральное государственное образовательное учреждение высшего профессионального образования

Московский государственный Агро-инженерный университет имени В.П.Горячкина

Расчётно-графическая работа:

Функциональные части компьютера, история развития, базовая конфигурация.


Выполнил студент первого курса: ________________________

Проверила: Степанова О.И.

Кафедра вычислительной техники и прикладной математики

Москва


20..г.

Оглавление:

Введение……………………………………………………………………………….….3
Основные сведения о ПК…………...……………………………………….4
Состав ПК, назначение основных блоков ПК, функциональные характеристики основных блоков ПК……………………………………...4
Первые электронно-вычислительные машины………………………...….8
История развития ЭВМ …………………………………………………...…9
История развития IBM……………………………………………………...12
Настоящее и будущее IBM……………………………………………....…14
Заключение…………………………………………………………………..15
Список литературы………………………………………………………….18
Расчётно-графическая работа……………………………………………....19

Введение Сегодня уже невозможно представить свою жизнь без персонального компьютера. Обычный системный блок, к которому мы все так давно привыкли стал абсолютно обыденной вещью. Мы уже не обращаем на него внимания как на чудо техники и на гений человеческого прогресса. Сегодня каждый, сколько бы ему ни было лет, может зайти домой и свободно воспользоваться стандартным пакетом услуг, которые установлены на любом компьютере. Но мало кто помнит о том громадном пути, который проделали ЭВМ для того, чтобы стать сегодняшним компьютером. Мы пользуемся сегодняшними плодами прогресса как совершенно обыденными вещами: как водой или электричеством. В памяти многих из нас не сохранились картинки тех лет, когда компьютер представлялся чем-то особенным и таинственным. Когда профессия "программист" вызывала массу непонятных восклицаний и завистливых взглядов. Мало кто помнит про перфокарты, но, что самое удивительное, люди уже начали забывать про обычные дискеты, которые до недавнего времени были незаменимы в использовании персонального компьютера. Цель и задача данной курсовой работы: проанализировать этапы развития электронно-вычислительных машин, сравнить их на каждом из трех этапов, попытаться понять и представить себе, насколько сильно наука скакнула вперед за такой короткий промежуток времени.

Основные сведения о ПК1

В настоящее время одними из самых популярных компьютеров стали модель IBM PC и ее модернизированный вариант IBM PC XT, который по архитектуре, программному обеспечению, внешнему оформлению считается базовой моделью персонального компьютера. Рассмотрим основную структуру и характеристики персонального компьютера IBM PC XT. В состав базового комплекта входят; системный блок2, дисплей1 с цветным изображением, клавиатура6, печатающее устройство (принтер), накопитель на гибком магнитном диске и накопитель на винчестерском диске. 


Основой персонального компьютера является системный блок. Он организует работу, обрабатывает информацию, производит расчеты, обеспечивает связь человека и ЭВМ. Пользователь не обязан досконально разбираться в том, как работает системный блок. Это удел специалистов. Но он должен знать, из каких функциональных блоков состоит компьютер. Мы не имеем четкого представления о принципе действия внутренних функциональных блоков окружающих нас предметов - холодильника, газовой плиты, стиральной машины, автомобиля, но должны знать, что заложено в основу работы этих устройств, каковы возможности составляющих их блоков.

Состав ПК, назначение основных блоков ПК,2 функциональные характеристики основных блоков ПК

СИСТЕМНЫЙ БЛОК персонального компьютера состоит из системной платы, имеющей размеры 212/300 мм и расположенной в самом низу, динамика, вентилятора, источника питания, двух дисководов. Один дисковод обеспечивает ввод-вывод информации с винчестерского диска, другой- с гибких магнитных дисков. 

СИСТЕМНАЯ ПЛАТА

Является центральной частью ЭВМ и составлена из нескольких десятков интегральных схем разного назначения. Микропроцессор выполнен в виде одной большой интегральной схемы. Предусмотрено гнездо для дополнительного микропроцессора Intel 8087-выполнения операции с плавающей запятой. При необходимости повысить производительность компьютера можно поместить его в это гнездо. Имеется несколько модулей постоянной и оперативной памяти. В зависимости от модели предусмотрены от 5 до 8 разъемов, куда вставляются платы различных адаптеров. 
Адаптер - это устройство, которое обеспечивает связь между центральной частью ЭВМ и конкретным внешним устройством, например между оперативной памятью и принтером или винчестерским диском. На плате также устанавливают несколько модулей, выполняющих вспомогательные функции при работе с компьютером. Имеются переключатели, которые необходимы для обеспечения работы компьютера при выбранном составе внешних устройств ( конфигурация компьютера). 

КЛАВИАТУРА 


Клавиатура есть у каждого компьютера. С его помощью в компьютер вводят информацию или отдают компьютеру команды. Прабабушкой клавиатуры компьютера была пишущая машинка. От нее клавиатура получила в наследство клавиши с буквами и цифрами. 
Но компьютер умеет делать больше дел, чем пишущая машинка, и потому у его клавиатуры намного больше клавиш. Разные клавиши служат для разных дел. Например, у обычной пишущей машинки нет клавиш для стирания того, что написано, а у клавиатуры - есть. Такая пишущая машинка не может вставить новое слово между двумя другими, а компьютер - может, и для этого тоже есть специальная клавиша. 
Когда мы играем в компьютерные игры, то чаще всего используем клавиши со стрелками. Их еще называют "курсорными клавишами". С помощью этих клавиш можно управлять тем, как бегает по экрану герой игры. Очень часто в играх используются клавиши СTRI и ALT. Одной клавишей герой стреляет, а другой - прыгает. Это довольно большие клавиши, к тому же они находятся в самом низу клавиатуры, и потому ими пользоваться удобно. 
Самая длинная клавиша - ПРОБЕЛ. Ее можно нажать даже с завязанными глазами. И потому ее тоже очень часто используют в играх. 

МОНИТОР 
При работе с компьютером больше всего информации мы получаем, глядя на экран монитора. Монитор чем-то похож на телевизор. Но телевизор нельзя смотреть вблизи, потому что он очень вредно действует на глаза. Монитор тоже действует на глаза, но не так сильно, как телевизор. Изображение у мониторов более четкое. 


Мониторы бывают разные. Они различаются размерами экранов и качеством изображения. Размер экрана измеряют дюймами. Если вы не знаете, что такое дюйм. то возьмите спичку и сломайте ее пополам. Длина такой половинки и есть дюйм. 
Измеряют экран наискосок - между противоположными углами. Обычные мониторы имеют 14 дюймов. Часто также встречаются мониторы с размером 15 дюймов. Бывают и еще больше, но дома ими редко пользуются. 
Если у вас мониторы с размером 14 дюймов, то на него надо обязательно надеть защитный экран - он намного снизит вред от излучения монитора. БЕЗ ЗАЩИТНОГО ЭКРАНА РАБОТАТЬ С ОБЫЧНЫМ МОНИТОРОМ НЕЛЬЗЯ! 
Гораздо лучше мониторы, у которых размер 15 дюймов. Они стоят дороже, но их качество выше. С такими мониторами можно работать и без защитного экрана, хотя он и им не помешает. 
МЫШЬ (МЫШКА) 
Мышь - очень удобная пластмассовая машинка для употребления компьютером. Это небольшая коробочка, внутри которой крутится резиновый шарик. Когда мышка двигается по столу или по специальному коврику, шарик крутится, а на экране двигается указатель мышки(курсор). 
Как и клавиатура и джойстик, мышь служит для управления компьютером. Это как бы "клавиатура наоборот". У клавиатуры более 100 клавиш, а у мыши-всего 2, но зато мышь можно катать по столу, а клавиатура стоит на одном месте. 
У мыши есть кнопки. Обычно их две - правая кнопка и левая. На левую кнопку удобно нажимать указательным пальцем. Поэтому эта кнопка используется очень часто. (У тех, кто не моет руки перед игрой с компьютером, эта кнопка особенно быстро пачкается). Правая кнопка используется реже - когда надо сделать что-то очень хитрое или умное. 
Бывают мыши с тремя кнопками. У них между правой и левой кнопками есть еще средняя кнопка. Эта кнопка замечательна тем, что она одна из самых бесполезных вещей на свете. Много лет назад были очень умные люди, которые ее придумали, но программ для таких мышей не делают, а трехкнопочные мыши еще встречаются. 

ПРИНТЕР 
Если вам удастся создать что-нибудь на компьютере, например, нарисовать свой портрет при помощи графического редактора, то, конечно же, захочется показать его друзьям. А если у друзей нет компьютера? Тогда хотелось бы напечатать этот рисунок на бумаге. 


Чтобы вывести на бумагу информацию, имеющуюся в компьютере, служит принтер. Принтер - это отдельное устройство. Он подключается к компьютеру с помощью разъема. Самые первые принтеры для компьютеров печатали очень медленно и могли напечатать только текст, похожий на тот, что получается на пишущей машинке. Потом появились принтеры, способные по точкам печатать картинки. 
Сегодня самые популярные принтеры - лазерные. На них получаются странички, не уступающие по качеству книжным. 
СКАНЕР 
Сканер - это как бы принтер "наоборот". С помощью принтера компьютер печатает на бумаге тексты или картинки. А с помощью сканера - наоборот. Напечатанные на бумаге тексты или картинки вводят в компьютер. 
Сканерами пользуются художники, когда рисуют картинки для компьютерных игр. Но художники ими пользоваться не очень любят. Они привыкли рисовать карандашом на бумаге - так получается лучше и быстрее. Поэтому картинки для игр сначала рисуют карандашом. Потом картинку вводят в компьютер при помощи сканера. Так нарисованная картинка превращается в данные, которые поступают в компьютер. На компьютере картинку раскрашивают. Для раскрашивания используют графический редактор. 
Хоть графический редактор и не очень удобен для рисования, для раскрашивания он подходит очень хорошо. 
Сканер так же необходим художнику, как писателю - принтер. 
Анализ новых решений построения структуры компьютера показывает, что процессор, память, устройства ввода - вывода составляют основу любого компьютера. Рассмотрим наиболее распространенную структурную схему, которая лежит в основе наиболее часто встречающихся моделей компьютеров, в частности персональных. Модульность, магистральность, микропрограммируемость, используется при разработке практически любой модели компьютера. 

Определения3:
Модульность - это построение компьютера на основе набора модулей. Модуль представляет собой конструктивно и функционально законченный электронный блок в стандартном исполнении. Это означает, что с помощью модуля может быть реализована какая-то функция либо самостоятельно, либо совместно с другими модулями. Организация структуры ЭВМ на модульной основе аналогична строительству блочного дома, где имеются готовые функциональные блоки, например санузел, кухня, которые устанавливаются в нужном месте. 
Магистральность - это способ связи между различными модулями компьютеров, т.е. все входные и выходные устройства подсоединены одними и теми же проводами, называемыми шинами. Как в городе главной артерией является центральная улица, связывающая центр города с помощью различных улиц и переулков с домами, кварталами, районами, так и в компьютере главной артерией является магистраль, по которой происходит основное движение информации. 
Магистраль компьютера состоит из нескольких групп шин, объединенных по функциональному признаку. Шинами данных служат провода, по которым передается только информация, шинами адреса-провода, по которым передаются адреса ячеек и участков памяти, шинами управления-провода, по которым передаются управляющие сигналы. Магистральный принцип лег в основу организации интерфейса.

Интерфейс - это совокупность аппаратуры сопряжения и программных средств для организации связи устройств компьютера и самих компьютеров. Аппаратуру сопряжения составляют электронные модули и шины предназначенные для выполнения различных функций. Организует работу аппаратуры сопряжения по передаче информации комплекс специальных программ. 
Для реализации принципа микропрограммируемости необходимо наличие в компьютере так называемой постоянной памяти, в ячейках которой будут постоянно храниться коды, соответствующие различным комбинациям управляющих сигналов. Каждая такая комбинация позволяет выполнить элементарную операцию, т.е. подключить определенные электрические цепи и схемы. 
Для того чтобы выполнить элементарную операцию, необходимо задать управляющий сигнал. Как уже было сказано, он хранится в ячейке постоянной памяти, имеющей совершенно определенный, конкретный адрес. Значит, достаточно задать определенную последовательность адресов, чтобы был сформирован набор управляющих сигналов для выполнения элементарных операций. Задает эту последовательность адресов микропрограмма, также хранящаяся в постоянной памяти. 
Современный компьютер можно представить в большинстве случаев упрощенной структурной схемой, где выделены центральная и периферийная части. К центральной части относятся процессор и внутренняя память, к периферийной части - устройства ввода-вывода и внешняя память. В основу упрощенной структурной схемы заложены принципы магистральности, модульности, микропрограммирумостью.

Первые электронно-вычислительные машины4

В годы Второй мировой войны производственные мощности корпорации были переориентированы на выполнение оборонных заказов. Тем не менее именно в лабораториях IBM совместно с учеными Гарвардского университета (среди них был Говард Эйкен) шла работа над созданием одной из первых электронно-вычислительных машин — автоматического последовательного управляемого калькулятора (Automatic Sequence Controlled Calculator). Такая машина была собрана в 1944 и получила название «Марк-1». Эта ЭВМ, весившая более пяти тонн, несмотря на невысокую скорость, могла осуществлять довольно сложную последовательность математических вычислений. В 1946 IBM предложила первую коммерческую модель электронно-вычислительной машины — IBM 603 Multiplier.

В 1952 была выпущена электронно-вычислительная машина IBM 701, использующая электронно-вакуумные лампы. В отличие от электромеханических переключателей, использовавшихся в «Марк-1», электронные лампы в этой машине легко заменялись в случае неисправности, а главное — позволили увеличить скорость вычислений до 17 тыс. операций в секунду. Созданный в 1954 на основе новой технологии компьютер NORC в том же году поступил на вооружение морской артиллерии США. С его помощью производились сложные баллистические вычисления, которые позволяли эффективно управлять огнем береговой артиллерии на сверхдальнем расстоянии. В 1957 годовой оборот корпорации IBM превысил 1 млрд. долларов.

При использовании электронно-вычислительных машин остро встал вопрос о хранении исходных данных и результатов вычислений, и в 1957 была создана машина IBM 305 RAMAC (Random Access Method of Accounting and Control), компьютер с системой хранения результатов вычислений. RAMAC получил широкое распространение в коммерческих фирмах, а в 1960 использовался на зимней Олимпиаде в Скво-Вэлли (США). В том же 1957 инженерами IBM был разработан язык программирования фортран. В 1952 Уотсон-старший, находившийся у руля компании почти 40 лет, уступил место своему сыну Томасу Уотсону-младшему.

С появлением транзисторов ламповые компьютеры морально устарели. В 1959 IBM создала свой первый полностью транзисторный мейнфрейм (большой универсальный компьютер) модели 7090, способный выполнять 229 тыс. операций в секунду. Такие мейнфреймы позволили военно-воздушным силам США создать систему раннего предупреждения о нападении баллистических ракет. В 1964 на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.

История развития ЭВМ5

История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось простейшее счетное устройство — абак. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты. В 1642 Блез Паскаль сконструировал восьмиразрядный суммирующий механизм. Два столетия спустя в 1820 француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах.

Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 английским математиком Чарлзом Бэббиджем. Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты — листы из плотной бумаги с информацией, наносимой с помощью отверстий. В то время перфокарты уже использовались в текстильной промышленности. Управление такой машиной должно было осуществляться программным путем.

Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века. В 1888 американский инженер Герман Холлерит сконструировал первую электромеханическую счетную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. В 1890 изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую пятьсот сотрудников выполняли в течение семи лет, Холлерит сделал с 43 помощниками на 43 табуляторах за один месяц.

В 1896 Герман Холлерит основал фирму Computing Tabulating Recording Company, которая стала основой для будущей Интернэшнл Бизнес Мэшинс (International Business Machines Corporation, IBM) — компании, внесшей гигантский вклад в развитие мировой компьютерной техники.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В феврале 1944 на одном из предприятий Ай-Би-Эм (IBM) в сотрудничестве с учеными Гарвардского университета по заказу ВМС США была создана машина «Марк-1». Это был монстр весом около 35 тонн. «Марк-1» был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо четыре секунды.

Но электромеханические реле работали недостаточно быстро. Поэтому уже в 1943 американцы начали разработку альтернативного варианта — вычислительной машины на основе электронных ламп. В 1946 была построена первая электронная вычислительная машина ENIAC. Ее вес составлял 30 тонн, она требовала для размещения 170 квадратных метров площади. Вместо тысяч электромеханических деталей ENIAC содержал 18 тысяч электронных ламп. Считала машина в двоичной системе и производила пять тысяч операций сложения или триста операций умножения в секунду.

Машина на электронных лампах работала существенно быстрее, но сами электронные лампы часто выходили из строя. Для их замены в 1947 американцы Джон Бардин, Уолтер Браттейн и Уильям Брэдфорд Шокли предложили использовать изобретенные ими стабильные переключающие полупроводниковые элементы —транзисторы.

Совершенствование первых образцов вычислительных машин привело в 1951 к созданию компьютера UNIVAC, предназначенного для коммерческого использования. UNIVAC стал первым серийно выпускавшимся компьютером, а его первый экземпляр был передан в Бюро переписи населения США.

С активным внедрением транзисторов в 1950-х годах связано рождение второго поколения компьютеров. Один транзистор был способен заменить 40 электронных ламп. В результате быстродействие машин возросло в 10 раз при существенном уменьшении веса и размеров. В компьютерах стали применять запоминающие устройства из магнитных сердечников, способные хранить большой объем информации.

В 1959 были изобретены интегральные микросхемы (чипы), в которых все электронные компоненты вместе с проводниками помещались внутри кремниевой пластинки. Применение чипов в компьютерах позволяет сократить пути прохождения тока при переключениях, и скорость вычислений повышается в десятки раз. Существенно уменьшаются и габариты машин. Появление чипа знаменовало собой рождение третьего поколения компьютеров.

К началу 1960-х годов компьютеры нашли широкое применение для обработки большого количества статистических данных, производства научных расчетов, решения оборонных задач, создания автоматизированных систем управления. Высокая цена, сложность и дороговизна обслуживания больших вычислительных машин ограничивали их использование во многих сферах. Однако процесс миниатюризации компьютера позволил в 1965 американской фирме Digital Equipment выпустить миникомпьютер PDP-8 ценой в 20 тысяч долларов, что сделало компьютер доступным для средних и мелких коммерческих компаний.

В 1970 сотрудник компании Intel Эдвард Хофф создал первый микропроцессор, разместив несколько интегральных микросхем на одном кремниевом кристалле. Это революционное изобретение кардинально перевернуло представление о компьютерах как о громоздких, тяжеловесных монстрах. С микропроцессом появляются микрокомпьютеры — компьютеры четвертого поколения, способные разместиться на письменном столе пользователя.

В середине 1970-х годов начинают предприниматься попытки создания персонального компьютера — вычислительной машины, предназначенной для частного пользователя. Во второй половине 1970-х годов появляются наиболее удачные образцы микрокомпьютеров американской фирмы Эпл (Apple), но широкое распространение персональные компьютеры получили с созданием в августе 1981 фирмой Ай-Би-Эм (IBM) модели микрокомпьютера IBM PC. Применение принципа открытой архитектуры, стандартизация основных компьютерных устройств и способов их соединения привели к массовому производству клонов IBM PC, широкому распространению микрокомпьютеров во всем мире.

За последние десятилетия 20 века микрокомпьютеры проделали значительный эволюционный путь, многократно увеличили свое быстродействие и объемы перерабатываемой информации, но окончательно вытеснить миникомпьютеры и большие вычислительные системы — мейнфреймы они не смогли. Более того, развитие больших вычислительных систем привело к созданию суперкомпьютера — суперпроизводительной и супердорогой машины, способной просчитывать модель ядерного взрыва или крупного землетрясения. В конце 20 века человечество вступило в стадию формирования глобальной информационной сети, которая способна объединить возможности различных компьютерных систем.

В следующем пункте будет обращено внимание на развитие компании IBM и, естественно подробности некоторых этапов развития компьютеров.


История развития IBM6

История компании восходит к концу 19 века, когда немецкий иммигрант Герман Холлерит, работавший в американском Бюро переписи населения, предложил автоматизировать статистический учет иммигрантов с помощью перфорированных карточек. Изобретенная им электрическая машина для обработки данных оказалась удачным образцом, и в 1896 Холлерит основал фирму под названием Tabulating Machine Co.

15 июня 1911 эта компания была объединена с двумя другими фирмами, специализировавшимися на автоматизации обработки статистических данных. Объединенная компания стала называться Computing Tabulating Recording (CTR). Она сумела завоевать свой сектор рынка и через некоторое время в Вашингтоне, Детройте, Торонто и Дейтоне открылись ее филиалы.

В 1914 генеральным менеджером CTR стал Томас Уотсон-старший, с именем которого связаны основные достижения компании в 1920-1940-е годы. К 1919 оборот компании удвоился и достиг 2 млн. долларов. Поскольку машины от CTR нашли сбыт в Европе, Южной Америке, Азии и Австралии, в 1924 CTR была переименована в International Business Machines (IBM).

Великая депрессия 1930-х годов нанесла существенный урон и корпорации IBM. Несмотря на спад производства, Уотсон продолжал финансировать научные разработки, оплачивал вынужденные отпуска сотрудников. В результате к 1935, когда правительству США понадобились системы автоматизированного учета занятости на 26 млн. человек, IBM была готова выполнить этот заказ в кратчайшие сроки. С этого времени корпорация IBM постоянно выполняет заказы на поставку оборудования для правительственных учреждений. В том же 1935 инженеры IBM создали первую электрическую печатную машинку.

IBM-совместимые компьютеры

В апреле 1964 году было объявлено о выпуске первых шести программно совместимых моделей семейства IBM System-360 на интегральных схемах. Они имели общий набор периферийных и внешних запоминающих устройств, единую систему стандартных структур данных и команд, отличались друг от друга объемом используемой памяти и производительностью. В центральном процессоре была введена система прерываний, а память строилась по блочному принципу.

Первые образцы компьютеров семейства IBM/360 положили начало ЭВМ третьего поколения. Они поступили к заказчикам во второй половине 1965 году, а к 1970 году было разработано 15 моделей, из которых самая малая (IBM/360-20-10) была примерно в 50 раз дешевле и в 100 раз менее производительна по сравнению с самой большой IBM/360-95. Модульная операционная система OS/360 имела уровни, предназначенные для самых разнообразных конфигураций аппаратной части. Главный разработчик операционной системы OS/360 Фред Брукс сравнил важность ее появления с тем значением, которое имели расщепление атома и запуск спутника.

В разработку семейства с универсальной масштабируемой архитектурой руководство IBM вложило за 4 года 5 млрд. доллларов — сумму, превышающую затраты правительства США на реализацию Манхэттенского проекта и беспрецедентную для частной компании времен 1960-х годов. Этот проект полностью изменил отраслевые стандарты, да и всю компьютерную индустрию, сделав позиции Голубого гиганта на рынках мейнфреймов практически неуязвимыми. Логическая структура System-360 послужила основой для разработки в 1967 году семейства бортовых машин 4Pi и почти десятка систем стратегического назначения. Наиболее знамениты бортовые компьютеры IBM для космических аппаратов Gemini и Apollo, а также машины для систем управления полетами в Хьюстоне. В 1969-1971 годах компьютеры IBM обеспечивали высадку американских астронавтов на Луну, в 1973 IBM выполнил заказ NASA на поставку компьютерного оборудования для программы «Союз-Аполлон». Впоследствии IBM принял участие и в программе полетов космических челноков «Шаттл».

Владельцы System-360 могли в случае необходимости модернизировать оборудование и программное обеспечение по частям, что давало существенную экономию средств. К концу 1960-х годов IBM господствовала на компьютерном рынке, объем сбыта ее продукции превысил 3 млрд. долларов.

В 1971 компания представила гибкий диск, который стал стандартом для хранения данных. В 1973, когда президентом IBM стал Фрэнк Кэри, выпуск компьютеров существенно вырос и увеличился срок их службы. В том же 1973 IBM выпустила систему автоматической считки цены изделий с помощью лазера, предназначенную для универсамов, а также компьютер IBM 3614, с помощью которого клиенты банков начали осуществлять операции по счетам.

В 1980 руководство IBM приняло революционное решение о создании персонального компьютера. При его конструировании был применен принцип открытой архитектуры: его составные части были универсальными, что позволяло модернизировать компьютер по частям. Для уменьшения затрат на создание персонального компьютера IBM использовала разработки других фирм в качестве составных частей для своего детища, в частности, микропроцессор фирмы Intel и программное обеспечение фирмы Microsoft. Появление IBM PC в 1981 породило лавинообразный спрос на персональные компьютеры, которые стали теперь орудием труда людей самых разных профессий. Наряду с этим возник гигантский спрос на программное обеспечение и компьютерное периферийное оборудование. На этой волне возникли сотни новых фирм, занявших свои ниши на компьютерном рынке.


Настоящее и будущее IBM7

Несмотря на огромное значение рынка персональных компьютеров, интересы IBM простираются гораздо шире. Традиционно сильны позиции корпорации в производстве мэйнфреймов. В 1995 IBM получила престижный заказ американского правительства на создание самого мощного в мире суперкомпьютера для Ливерморской лаборатории — центра ядерных исследований в США. В 1996-97 детище IBM — шахматный компьютер Deep Blue вступил в единоборство с чемпионом мира по шахматам Гарри Каспаровым. IBM выпускает также собственные микропроцессоры, а ее операционная система OS/2 применяется в каждом третьем банке США.

Лидирующие позиции компания IBM занимает и в области проектирования и производства серверов. Модель IBM eServer iSeries 400 (AS/400) — наиболее популярный в мире сервер бизнес-приложений. На сегодняшний день в 150 странах работают более 700 тысяч систем IBM iSeries 400 (AS/400). Система IBM iSeries 400 обладает уникальными возможностями масштабирования. Младшие модели серверов предназначены для нужд небольших компаний и работают на одном процессоре. Старшие, более мощные модели, построены на 64-х битной технологии. Они могут наращиваться до 32-х процессоров и обслуживать крупные организации.

Исследования ученых в научных лабораториях IBM выходят далеко за рамки чисто коммерческих интересов и имеют значение для всей мировой науки. В 1986 сотрудники IBM Г. Бинниг и Г. Рорер были удостоены Нобелевской премии по физике за создание растрового туннельного микроскопа, а в 1987 Нобелевскими лауреатами также по физике стали сотрудники IBM Й. Г. Беднорц и К. А. Мюллер за открытие новых сверхпроводящих материалов. IBM занимает первое место среди компаний США по количеству полученных патентов на изобретения. В 1996 IBM запатентовала 1867 изобретений. На научные исследования корпорация тратит около 5 млрд. долларов в год.

В 1993 новый председатель совета директоров Луис Герстнер избрал в качестве нового стратегического направления корпорации создание сетевого компьютера и развитие сетевых технологий. Первый образец такого компьютера появился в 1996, а 31 декабря того же года IBM, Mastercard и Датская платежная система объявили о первой транзакции (платеже) через Internet с использованием протокола SET. Ближайшими своими задачами IBM видит создание надежных систем для электронного бизнеса. IBM принадлежит 95% рынка программного обеспечения для работы банкоматов. Являясь самым крупным провайдером услуг Интернет, компания обслуживает более 30 тыс. корпоративных клиентов в 850 городах в более чем 100 странах мира.

Доходы IBM в 1999 превысили 87 млрд. долларов. Чистая прибыль компании составила 7,7 млрд. долларов. В 1999 штат сотрудников компании насчитывал около 300 тыс. человек.

Заключение


Проделав свое исследование на основе полученных из интернета статей и книг об истории развития ЭВМ и IBM, я могу заключить, что они развивались достаточно быстро. Цель, которую я ставил перед собой в начале моего исследования считаю достигнутой.

За достаточно короткий промежуток времени Электронно-вычислительная техника сделала большой скачок вперед. Я уже не застал (равно как и все мое поколение) тех огромных компьютеров, которые занимали целые залы и аудитории, а иногда даже этажи. Те компьютеры работали медленно и создавались исключительно в научных целях. Они упрощали подсчеты человека и брали часть его функций (на момент появления первой ЭФМ лишь малую часть) на себя. Компьютеры изначально разрабатывались как помощники человека. Сегодня я могу с уверенностью переделать известную фразу "Собака – друг человека" в "Компьютер – друг человека". Если совсем недавно техника была подчиненным человека и выступала с позиции крестьянина рядом со своим помещиком, то теперь этот "крестьянин" стал выпрямляться и не далек тот день, когда "крепостное право" будет отменено. За те 50 лет, которые ЭВТ развивалась, компьютеры стали незаменимым подспорьем в жизни человека: ракеты запускаются в космос по показаниям компьютеров, погода на завтра определяется мощнейшим компьютером, скорость обработки данных которого запредельно высока даже для понимания продвинутого юзера, фабрики, заводы, даже больницы – везде важен процесс автоматизации. Сегодня многие операции проводятся специально созданными машинными роботами, которые появились на свет благодаря последним компьютерным разработкам. Да и невозможно человеку современному представить свою жизнь без ПК. Человечество не стоит на месте, и прогресс неумолимо бежит вперед. За последние сто лет мы так далеко ушли вперед, что тяжело даже осознать, что на это потребовалось всего лишь 100 лет.

Список литературы 

1. Кузнецов Е. Ю., Осман В. М. Персональные компьютеры и программируемые микрокалькуляторы: Учеб. пособие для ВТУЗов - М.: Высш. шк. -1991 г. 160 с. 


2. Растригин Л. А. С компьютером наедине - М.: Радио и связь, - 1990 г. - 224с.

3.Джек Минго. Как компании стали великими. М. 2001.

4.Информатика: базовый курс. Под. ред. Симоновича С.В. – СПб.: Питер, 2001.

5.Платонов Ю. М. «IBM PC»

6.Эндри Ротбом «ПК для «чайников»». 4-е издание М. 2000.

Расчётно-графическая работа

1. зададим интервал x от 0 до 1,С ШАГОМ 0.05.

2. найдём значение функции на данном интервале.

3. определим наибольшее ,наименьшее значение функции на данном интервале.

4. построим график.

__________________________________________________________________

1.[0;1]

2.y-max=2,46



y-min=0

3.∆x=0,05



c:\users\денис\pictures\безымянный.jpg


1 Эндри Ротбом «ПК для «чайников»». 4-е издание М. 2000.

2 Растригин Л. А. С компьютером наедине - М.: Радио и связь, - 1990 г. - 224с.

3 Информатика: базовый курс. Под. ред. Симоновича С.В. – СПб.: Питер, 2001.

4 Кузнецов Е. Ю., Осман В. М. Персональные компьютеры и программируемые микрокалькуляторы: Учеб. пособие для ВТУЗов - М.: Высш. шк. -1991 г. 160 с. 

5 Джек Минго. Как компании стали великими. М. 2001.

6 Платонов Ю. М. «IBM PC»

7 Платонов Ю. М. «IBM PC»


Поделитесь с Вашими друзьями:


База данных защищена авторским правом ©nethash.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал