Экзаменационные билеты по информатике. 2000/2001 учебный год. Билет №1



страница7/8
Дата14.04.2017
Размер1.22 Mb.
Просмотров595
Скачиваний0
ТипЭкзаменационные билеты
1   2   3   4   5   6   7   8

Аппаратные средства мультимедиа


Технология мультимедиа предъявляет высокие требования к аппаратным возможностям компьютеров. Рассмотрим минимальную и оптимальную (имеется в виду соотношение цена/производительность) на сегодняшний день (начало 1998 года) конфигурацию мультимедиа-компьютера.




Процессор

Оперативная память

Жесткий диск

Видео плата

Монитор
CD-ROM

Звуковая карта

Минимальная

конфигурация



486DX -50

8Мб

200 Мб

512Кб

14",50 Гц, 0,28 мм

Односкоростной

8 бит

Оптимальная

конфигурация



Pentium 166 ММХ

32Мб

2Г6

2Мб

17",80 Гц, 0,26 мм

Двенадцатискоростной

16 бит

Процессор мультимедиа-компьютера должен иметь высокую производительность, особенно для работы со звуковыми и видеофайлами. Как минимум, необходим процессор 486DX-50, который появился в начале 90-х годов (кстати, именно тогда начала развиваться технология мультимедиа). Оптимальным является процессор Pentium 166 ММХ, который функционирует с использованием технологии ММХ, т. е. имеет новые специальные базовые команды для обработки мультимедиа объектов.

Мультимедиа-приложения, т. е. программы создания и обработки мультимедиа-объектов, а также сами мультимедиа-объекты имеют большой информационный объем (десятки и сотни мегабайт). Это требует наличия в компьютере оперативной памяти и жесткого диска с большой информационной емкостью. Минимальная конфигурация компьютера (8Мб оперативной памяти и жесткий диск 200 Мб) позволит использовать мультимедиа-технологии с большими ограничениями.

Объем памяти видеоплаты определяет возможные видеорежимы, которые характеризуются разрешающей способностью (количеством точек на экране) и глубиной цвета (количеством цветов). Так, для объема видеопамяти 512Кб наилучшим видеорежимом будет видеорежим 640 на 480 точек с палитрой из 256 цветов. Для объема видеопамяти 2 Мб наилучшим видеорежимом будет видеорежим 1024 на 768 точек с палитрой из 65 536 цветов. (Подробнее смотри билет № 20, вопрос 2.)

Технология мультимедиа предъявляет повышенные требования к качеству мониторов. Размер экрана монитора характеризуется величиной его диагонали, выраженной в дюймах. Размер диагонали 14" (35 см) явно недостаточен, оптимален монитор с диагональю 17" (43 см).

Важнейшей характеристикой монитора, влияющей на утомляемость пользователя, является частота смены кадров (частота вертикальной развертки). Недопустимо, если она меньше 50 Гц, и желательно, чтобы ее величина была больше 70 Гц. Размер точки на экране также важен, он не должен быть больше 0,28 мм, в современных качественных мониторах он составляет 0,26 мм и меньше.

Мультимедиа-программы и файлы распространяются на CD-ROM-дисках. CD-ROM-дисководы различаются скоростями вращения дисков (12-скоростные, 24-скоростные дисководы), где за единицу принята скорость вращения первых CD-ROM-дисководов. Скорость вращения диска определяет скорость чтения информации с диска, для односкоростного CD-ROM-дисковода она составляет 150 Кб/с, соответственно для 24-скоростного — 3600 Кб/с. Интересно, что по этому показателю CD-ROM-дисководы сравнялись с жесткими дисками.

Звуковые платы обеспечивают двоичное кодирование аналогового звукового сигнала. Непрерывный сигнал дискретизируется, т. е. заменяется серией его отдельных выборок — отсчетов. Качество двоичного кодирования зависит от двух параметров: количества распознаваемых дискретных уровней сигнала и количества выборок в секунду.

Различные звуковые карты могут обеспечить 8-или 16-битные выборки, 8-битные карты позволяют закодировать 256 различных уровней дискретизации звукового сигнала, соответственно 16-битные — 65 536 уровней.

Количество выборок в секунду, т. е. частота дискретизации аналогового звукового сигнала, может принимать следующие значения: 5,5 КГц, II КГц, 22 КГц и 44 КГц. Таким образом, качество звука в дискретной форме может быть очень плохим (качество радиотрансляции) при 8 битах и 5,5 Кгц и очень высоким (качество aудиoCD) при 16 битах и 44 КГц.

Для записи звука к звуковой плате может быть подключен микрофон или устройство воспроизведения звука (магнитофон, CD-плейер). Для воспроизведения звука к ее выходу могут быть подключены акустические колонки или наушники, а также любая акустическая система (магнитофон, музыкальный центр и т. д.).

Для полной реализации мультимедиа-технологий к компьютеру могут быть подключены дополнительные периферийные устройства:


  • сканер (преобразует изображения в графические

  • файлы);

  • цветной принтер (позволяет распечатывать графические файлы);

  • CD-recorder (позволяет записывать CD-ROM-диски); ' TV-тюнер (позволяет просматривать на экране монитора телевизионные программы);

  • цифровая фото- или видеокамера (позволяет сохранять фотографии и видеофильмы в виде файлов).

Программные средства мультимедиа.

В операционной системе Windows 95 имеются стандартные средства работы с мультимедиа-объектами. Прежде всего, это программы, входящие в группу «Мультимедиа»:



  • фонограф (запись и редактирование звуковых файлов);

  • универсальный проигрыватель (проигрывание аудиофайлов, видеофайлов, файлов анимации);

  • лазерный проигрыватель (проигрывание ау-дио-CD дисков).

В Microsoft Office 97 имеются следующие программы:

  • PowerPoint (создание мультимедиа-презентаций);

  • Photo Editor (создание и преобразование графических файлов);

  • Word (создание и редактирование мультимедиа-документов).

Для создания и редактирования графических файлов, создания анимации и разработки мультимедиа-проектов используются специализированные системы, такие, как CorelDraw, AnimatorPro, ToolBook и др.

Для профессиональной работы по создания и редактирования звуковых файлов используются специализированные звуковые редакторы.


Билет № 14

Разветвляющиеся алгоритмы. Команда ветвления.

В отличие от линейных алгоритмов, в которых команды выполняются последовательно одна за другой, в разветвляющиеся алгоритмы входит условие, в зависимости от выполнения или невыполнения которого выполняется та или иная последовательность команд (серий).

В качестве условия в разветвляющемся алгоритме может быть использовано любое понятное исполнителю утверждение, которое может соблюдаться (быть истинно) или не соблюдаться (быть ложно). Такое утверждение может быть выражено как словами, так и формулой. Таким образом, команда ветвления состоит из условия и двух последовательностей команд.

Команда ветвления, как и любая другая, может быть:



  • записана на естественном языке;

  • изображена в виде блок-схемы;

  • записана на алгоритмическом языке;

  • закодирована на языке программирования.




Блок-схема















Рассмотрим в качестве примера разветвляющийся алгоритм, изображенный в виде блок-схемы.

Аргументами этого алгоритма являются две переменные А, В, а результатом — переменная X. Если условие А >= В истинно, то выполняется команда Х:=А*В, в противном случае выполняется команда Х:=А+В. В результате печатается то значение переменной X, которое она получает в результате выполнения одной из серий команд.
Запишем теперь этот алгоритм на алгоритмическом языке и на языке программирования Бейсик. алг ветвление (вещ А, В, X) аргА, В рез Х нач ввод А, В если А >= В то Х : - А*В иначе Х : =А+В

Вывод Х Конец )

все вывод Х кон

10 REM ветвление

20 INPUT А, В

30 IF A >= В THEN X = А*В ELSE X = A + В

40 PRINT X

50 END
Информационная технология решения задачи с помощью компьютера: основная технологическая цепочка.

Существует определенная последовательность использования компьютера для решения достаточно широкого класса задач, которая задает следующую основную технологическую цепочку:

постановка задачи; построение математической модели;

уточнение задачи с использованием математических понятий;

построение информационной модели, т. е. модели из символов;

написание программы для компьютера или использование готовых программных средств;

исполнение программы;

анализ результатов

(стрелка означает, что при неудовлетворительных результатах необходимо уточнить модель).

При этом под моделью будем понимать совокупность объектов и отношений, называемых моделирующими, которые выражают существенные стороны изучаемого объекта или процесса.

В моделях заключена информация о внешнем мире. Чем точнее модель, тем большую информацию она несет.

Модель, построенная из математических объектов (чисел, формул и пр.), называется математической моделью. Например, из механики известно, что движущаяся по плоскости материальная точка хорошо описывается уравнением: F == т • а (2-й закон Ньютона). Это уравнение и есть математическая модель движения.

Компьютер не работает с математическими моделями. Он не понимает, что такое «число», «функция» и пр. Он может понимать только знаки, которыми обозначаются числа, функции и пр. и которые условно называются «0» и «1».

Таким образом, для анализа математической модели на компьютере необходимо перейти от математических моделей к их знаковой записи, т. е. к информационным моделям.

Отличие информационных моделей от математических заключается в том, что информационные модели строятся из букв.

Например, математическая модель движения F == т • а состоит из букв: «F», «=», «тп», « • », «а».

Информационная модель состоит из двух основных компонент: данных, т. е. некоторой совокупности букв, выражающих ту информацию, которую надо обработать, и последовательности команд, которые предписывают компьютеру совершить последовательность действий над данными, чтобы получить необходимый результат (это аналогично тому, что естественный язык состоит из существительных и глаголов). Эта последовательность команд называется алгоритмом.

Алгоритм адресован конкретному исполнителю. По отношению к нему алгоритм должен обладать двумя основными свойствами: все команды алгоритма должны быть понятны исполнителем (свойство понятности); исполнитель должен быть в состоянии выполнить все команды алгоритма (свойство точности).

Можно сделать так. Для каждого исполнителя надо фиксировать систему его команд, т. е. те команды, которые он понимает и в состоянии выполнить и далее строить алгоритм, используя только эти команды.

Для того чтобы компьютер понимал алгоритм, его необходимо записать на некотором языке, который называется языком программирования. Известны языки программирования: Бейсик, Фортран, Паскаль и др.

Если результат работы алгоритма по тем или иным причинам неудовлетворителен, то уточняется модель и решение задачи повторяется по той же самой технологической цепочке.

В последние годы для решения многих задач уже не нужно строить специальный алгоритм, а можно использовать готовое программное обеспечение с широкой областью применения. К такому обеспечению относятся: графические и текстовые редакторы, базы данных и пр.


Билет №15

Циклические алгоритмы. Команда повторения.

В отличие от линейных алгоритмов, в которых команды выполняются последовательно одна за другой, в циклические алгоритмы входит последовательность команд, выполняемая многократно. Такая последовательность команд называется телом цикла.

В циклах типа пока тело цикла выполняется до тех пор, пока выполняется условие. Выполнение таких циклов происходит следующим образом: пока условие справедливо (истинно), выполняется тело цикла, когда условие становится несправедливым, выполнение цикла прекращается.

Цикл, как и любая другая алгоритмическая структура, может быть:

• записан на естественном языке;

• изображен в виде блок-схемы;

• записан на алгоритмическом языке;

• закодирован на языке программирования.



Блок-схема

Алгоритмический язык
Бейсик









Рассмотрим циклический алгоритм типа пока на примере алгоритма вычисления факториала, изображенного на блок-схеме. Переменная N получает значение числа, факториал которого вычисляется. Переменной N!, которая в результате выполнения алгоритма должна получить значение факториала, присваивается первоначальное значение 1. Переменной К также присваивается значение 1. Цикл будет выполняться, пока справедливо условие К <== N. Тело цикла состоит из двух операций N! : = N!*K и К:=К+1.


Циклические алгоритмы, в которых тело цикла выполняется заданное число раз, реализуются с помощью цикла со счетчиком. Цикл со счетчиком реализуется с помощью команды повторения.

Рассмотрим в качестве примера алгоритм вычисления суммы квадратов целых чисел от 1 до 3. Запишем его на алгоритмическом языке. Телом цикла в данном случае является команда S :=S+ п*п. Количество повторений тела цикла зафиксировано в строке, определяющей изменение значений счетчика цикла (для пот 1 до 3), т.е. тело цикла будет выполнено три раза. алг сумма квадратов (цел S)

рез S нач нат п S:=0 для п от 1 до 3

на

I S:=S+n*n кц


Аппаратные компоненты и программные средства компьютера.

В процессе ответа целесообразно изложить общее представление о компьютере, последовательно раскрывая функциональное назначение тех или иных его аппаратных компонентов и программных средств. Параллельно объяснению полезно рисовать простейшую схему компьютера, обращая особое внимание на информационное взаимодействие компонентов компьютера, а также на их техническую реализацию.

Компьютер предназначен для обработки информации, следовательно, должно существовать центральное устройство, которое эту функцию выполняет. Такое устройство называется процессор и в настоящее время аппаратно реализуется в виде большой интегральной схемы (БИС). Современные процессоры типа Pentium II содержат в себе миллионы функциональных элементов (типа диод или транзистор).

Процессор может обрабатывать числовую, текстовую, графическую, видео- и звуковую информацию. Все эти виды информации кодируются в последовательности электрических импульсов: есть импульс (1), нет импульса (0), т. е. в последовательности нулей и единиц. Такое кодирование информации в компьютере называется двоичным кодированием.

Однако пользователь (человек) очень плохо понимает информацию, представленную в виде последовательностей нулей и единиц (машинный язык), и тем более не воспринимает ее в виде последовательностей электрических импульсов. Следовательно, в компьютере необходимы специальные устройства ввода/вывода информации, которые «переводят» информацию с языка человека на язык компьютера и обратно.

Рассмотрим сначала устройства ввода информации, т. е. устройства, которые «переводят» информацию с языка пользователя на язык компьютера. Для ввода числовой и текстовой информации используется клавиатура.

Для ввода графической информации чаще всего используется манипулятор типа мышь. Если мы хотим ввести в компьютер фотографию или рисунок, то используется специальное устройство — сканер.

Для ввода звуковой информации используется микрофон, подключенный ко входу звуковой платы.

Устройства вывода информации переводят ее с машинного языка на язык человека. Наиболее универсальным устройством вывода является дисплей, на экране которого высвечивается числовая, текстовая, графическая и видеоинформация.
Для сохранения числовой, текстовой и графической информации в виде « твердой копии » на бумаге используется принтер. Принтеры бывают матричные, струйные и лазерные.

Для вывода на бумагу сложных чертежей, рисунков и схем большого формата используется плоттер (графопостроитель).

Вывод звуковой информации осуществляется с помощью акустических колонок или наушников, подключенных к выходу звуковой платы.

В общих чертах мы рассмотрели, как происходит диалог пользователь — компьютер. Следующий вопрос: «Кто и как управляет работой процессора и тем самым определяет содержание процесса обработки информации?»

В основе процесса обработки информации лежит программный принцип работы компьютера, т. е. существует инструкция для процессора (программа), которая определяет, какие данные, как и в какой последовательности обрабатывать.

В процессе работы программы и данные загружаются в специальное устройство — оперативную память. Объем оперативной памяти на современных компьютерах составляет от 8 до 32 Мб, а аппаратно оперативная память реализуется на БИС различных типов (SIMM, DIMM и т. д.).

Однако при выключении компьютера вся информация из оперативной памяти стирается. Как повторно загрузить программу или оперативно загружать различные программы? Для пользователя необходимо иметь возможность долговременного хранения большого количества различных программ и данных. Предназначенные для этого устройства называются устройствами внешней памяти.

Аппаратно внешняя память реализуется на накопителях на гибких магнитных дисках (НГМД) емкостью 1,2 Мб или 1,44 Мб, жестких дисках (НЖМД) емкостью от 1 до 6 Гб и CD-ROM-дисководах емкостью 640 Мб. Дисководы для гибких дисков и жесткие диски используют магнитный принцип записи, когда информация записывается путем намагничивания отдельных небольших участков (нет намагниченности — 0, есть намагниченность — 1). CD-ROM-дисководы используют лазер для считывания информации с CD-ROM-диска, на котором чередуются участки с различной отражающей способностью.

Пользователи для работы на компьютере используют программы-приложения. С помощью этих программ они могут создавать различные файлы-документы (текстовые, графические, звуковые и др.). Программы-приложения имеют объем в десятки и сотни мегабайт, хранятся во внешней памяти и по мере необходимости загружаются в оперативную память. Это могут офисные приложения (Word, Excel и т. д.), сетевые приложения (браузе-ры, почтовые программы и т. д.), программы обработки графики (CorelDraw) и другие.

Программисты для работы используют трансляторы языков (Turbo Pascal, С) и современные системы программирования с графическим интерфейсом (VisualBasic, Delphi). С помощью этих программ создаются исполняемые программы. Системы программирования имеют объем в десятки мегабайт, хранятся во внешней памяти и при необходимости загружаются в оперативную память.

Для того чтобы все устройства компьютера работали согласованно и пользователю были доступны аппаратные ресурсы, необходима операционная система. Операционная система хранится во внешней памяти и при включении компьютера загружается в оперативную память. На IBM-совместимых компьютерах долгое время использовалась операционная система MS-DOS, в настоящее время используется операционная система с графическим интерфейсом Windows.
Билет №16

Разработка алгоритмов методом последовательной детализации. Вспомогательные алгоритмы.

Процесс решения сложной задачи довольно часто сводится к решению нескольких более простых подзадач. Соответственно при разработке сложного алгоритма он может разбиваться на отдельные алгоритмы, которые называются вспомогательными. Каждый такой вспомогательный алгоритм описывает решение какой-либо подзадачи.

Процесс построения алгоритма методом последовательной детализации состоит в следующем. Сначала алгоритм формулируется в «крупных» блоках (командах), которые могут быть непонятны исполнителю (не входят в его систему команд) и записываются как вызовы вспомогательных алгоритмов. Затем происходит детализация, и все вспомогательные алгоритмы подробно расписываются с использованием команд, понятных исполнителю.

Рассмотрим процесс создания алгоритма Домик для исполнителя Чертежник методом последовательной детализации. Пусть необходимо нарисовать домик с крышей.

Сначала запишем алгоритм, состоящий из крупных блоков. Такими блоками, содержащими «непонятные» для исполнителя Чертежник команды, являются блоки стена, крыша. Теперь детализируем эти блоки и запишем их в виде вспомогательных алгоритмов, содержащих понятные Чертежнику команды.

Ширина домика: 4

Высота стены: 2

Высота крыши: 1
алг домик нач 1 стена 1 крыша

алг стена нач сместиться в точку опустить перо сместиться в точку сместиться в точку сместиться в точку сместиться в точку поднять перо кон

(0,0)

(0,2) (4,2) (4,0) (0,0)



алг крыша нач

сместиться в точку (0, 2) опустить перо сместиться в точку (2, 3) сместиться в точку (4, 2) сместиться в точку (0, 2) поднять перо кон

В результате мы имеем основной алгоритм (домик), созданный методом последовательной детализации, в который входят как составные части два вспомогательных алгоритма (стена, крыша).
Функциональные узлы процессорах регистры, сумматоры и др.

Процессор должен выполнять команды программы, которые хранятся в оперативной памяти по определенным адресам. В команде указано, какие действия необходимо выполнить над данными, а также адреса данных. Для того чтобы считывать команды и данные из оперативной памяти, а также записывать результаты выполнения команд в оперативную память, внутренняя магистраль процессора должна быть подключена к внешней магистрали системной платы. Подключение внутренней магистрали процессора ко внешней магистрали осуществляется через буферы адреса и данных.

Основным устройством процессора является арифметико-логическое устройство (АЛУ). Именно это устройство выполняет все операции над данными. Таким образом, это устройство должно иметь специальные регистры (команд и данных) для временного хранения поступивших из оперативной памяти команд и данных.

Для того чтобы выполнить команду, процессор должен ее расшифровать (декодировать), т. е. по двоичному коду определить характер и последовательность действий с данными. Значит, в составе АЛУ должно быть декодирующее устройство.

Операции над данными производятся в сумматоре, а результат помещается в специальный регистр, называемый аккумулятором.

В состав процессора входит устройство управления, которое помимо других функций отслеживает последовательность выполнения команд, т. е. в нем имеется счетчик команд (программный счетчик).

Кроме этого, в состав процессора входят регистры общего назначения, представляющие собой совокупность ячеек памяти, предназначенных для временного хранения необходимой процессору информации. Так как регистры общего назначения выполнены непосредственно в БИС процессора, они обладают очень большим быстродействием. В современных процессорах типа Pentium такие регистры образуют кэш-память.
Рассмотрим цикл работы процессора, например, при сложении двух чисел:

1. В результате начального включения или завершения предыдущей команды в программном счетчике устанавливается адрес команды и через буфер передается в шину адреса компьютера.

2. В оперативную память компьютера из устройства управления процессора посылается сигнал «чтение», происходит считывание команды из ячейки с указанным адресом, содержимое ячейки выдается в шину данных компьютера и через буфер данных попадает в регистр команд.

3. Декодирующее устройство расшифровывает код операции, содержащийся в команде, и передает управление сумматору.

4. Сумматор начинает выполнение соответствующих действий и запрашивает из оперативной памяти (или с устройства ввода) находящиеся по указанным адресам данные.

5. Результат выполнения команды помещается в аккумулятор и при необходимости пересылается в определенные ячейки оперативной памяти компьютера.


Билет № 17

Компьютер как формальный исполнитель алгоритмов (программ).

Алгоритм может быть записан на естественном языке, изображен в виде блок-схемы, записан с соблюдением строгих правил синтаксиса на алгоритмическом языке или закодирован на языке программирования. Для того чтобы компьютер мог его выполнить, алгоритм должен быть записан на понятном для компьютера языке.

Устройством, которое обрабатывает информацию в компьютере, является процессор, следовательно, алгоритм должен быть записан на языке, «понятном» для процессора, т. е. должен использовать систему команд процессора. Таким образом, алгоритм должен быть записан на машинном языке, представляющем собой логические последовательности нулей и единиц.

Действительно, вначале, в 50—60 годы, программы писались на машинном языке, т. е. представляли собой очень длинные последовательности нулей и единиц. Однако составление программ на машинном языке было чрезвычайно трудоемким делом.

Для облегчения труда программистов начали создаваться языки программирования, т. е. искусственно созданные языки с несколькими десятками слов (операторов) и строгими правилами синтаксиса, т. е. правилами соединения этих слов в предложения.

Известный всем Бейсик был создан в 1964 году сотрудниками Дартмутского колледжа Дж. Кемени и Т. Курцом. (Название BASIC является аббревиатурой английского названия Beginner's All-purpose Symbolic Instruction Code.) Интересно, что языки программирования развиваются так же, как и естественные, т. е. они обогащаются новыми операторами и новыми возможностями, возникают различные версии языка (QBasic, VisualBasic и др.).

Для того чтобы процессор мог выполнить программу, эта программа и данные, с которыми она работает, должны быть загружены в оперативную память.

Итак, мы создали программу на Бейсике (некоторый текст) и загрузили ее в оперативную память из внешней памяти или с клавиатуры. Теперь мы хотим, чтобы процессор ее выполнил, однако процессор «понимает» команды на машинном языке, а наша программа написана на Бейсике. Как быть? Необходимо, чтобы в оперативной памяти находилась программа переводчик (транслятор), автоматически переводящая с Бейсика на машинный язык.

Ясно, что один и тот же компьютер может «понимать» и QBasic, и Turbo Pascal, и какой-либо другой язык, все зависит от того, транслятор какого языка программирования размещен в оперативной памяти компьютера.

Рассмотрим на простейшем примере (умножение двух чисел) процесс построения алгоритма, его кодирование на языке программирования и выполнение программы. В качестве языка программирования выбран Бейсик, однако это может быть практически любой язык программирования.

Сначала запишем алгоритм на естественном языке. Он является линейным и состоит из трех действий. Затем построим блок-схему данного алгоритма, что позволяет в наглядной форме представить логическую структуру алгоритма и проследить динамику его выполнения. В процессе построения алгоритма особое внимание обратим на то, какие данные вводятся в компьютер и какие выводятся (фиксируются аргументы и результаты алгоритма).

Естественный язык

Блок-схема

Бейсик









Следующим этапом является кодирование алгоритма на языке программирования (в данном случае Бейсике) и загрузка полученной программы в оперативную память. Оперативная память состоит из отдельных адресуемых ячеек, в которых информация может храниться, записываться и стираться. Каждая ячейка имеет уникальный адрес, и в ней может храниться 1 байт информации. Количество таких ячеек в современных компьютерах велико и соответствует объему памяти, выраженному в байтах. Для памяти 16 Мб оно составляет 16 777216 ячеек.

Программа займет в оперативной памяти определенное количество ячеек в области, отведенной для программ пользователя. Программа будет записана в памяти во внутреннем представлении языка программирования (в данном случае Бейсика), который процессор «не понимает». Для перевода программы на машинный язык, понятный процессору, в памяти должна находиться программа-транслятор с данного языка программирования.

Переход в режим выполнения программы задается соответствующей командой (RUN), процессор последовательно будет считывать из памяти операторы и их выполнять. Выполнение программы «проиграем» на структурной схеме компьютера на конкретном примере (например, умножение чисел 5 и 8).


REM — оператор комментариев; неисполняемый оператор, все, что стоит в строке программы после этого оператора, компьютером игнорируется.

INPUT — оператор ввода значений переменных; процессор отводит в оперативной памяти области (некоторое количество ячеек) и «называет» их именами переменных (А, В) из списка вво'да; запрашивает у пользователя их значения (на экране дисплея появляется знак вопроса ?); пользователь вводит значения переменных с клавиатуры (5,8); процессор записывает эти значения в отведенные области памяти.

LET — оператор присваивания; процессор считывает из памяти значения переменных (А, В), составляющих арифметическое выражение в правой части присваивания; вычисляет значение арифметического выражения (40); отводит в памяти область под переменную, стоящую в левой части присваивания (X); записывает вычисленное значение (40) арифметического выражения в эту область.

PRINT — оператор вывода значений переменных на экран; процессор считывает значение переменной (X) из памяти и высвечивает это значение (40) на экране дисплея.

END — оператор окончания программы; на экране дисплея появляется соответствующее сообщение (Ok) и курсор.
Системы счисления. Двоичная система счисления и ее применение в вычислительной технике.

Под системой счисления понимают совокупность приемов для представления и записи чисел с помощью определенного количества знаков (цифр).

Мы привыкли считать предметы десятками: десять единиц образуют десяток, десять десятков — сотню, десять сотен — тысячу и т. д. Наша система счисления десятичная. Но десятичная система не единственно возможная. Существуют, например, двенадцатеричная система счисления (там счет идет на дюжины) или римская система счисления.

Различают позиционные и непозиционные системы счисления. В позиционных системах значение (вес) каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Примером позиционной системы является десятичная система счисления. Проанализируем, как представляются числа в этой системе.

Для представления чисел в десятичной системе используются десять цифр: от 0 до 9. Число 2359,407, записанное в десятичной системе, читается как «две тысячи триста пятьдесят девять и четыреста семь тысячных » и может быть представлено следующим образом:

2-1000+3-100+5-10+9-1+4-0,1+7-0,001. Множители каждого слагаемого представляют собой одну из степеней числа 10, т.е. можно записать:

10^+9-10°+4- 10^ +

10^ + 10^ + 7

10^ +

+ 0 - 10" + 7 - 10"



Подчеркнем, что положение (позиция) цифры определяют ее значение. Двойка, стоящая на первом месте, означает количество тысяч в этом числе, а четверка, стоящая после запятой, — количество десятых долей.

В непозиционных системах значение цифры не зависит от ее позиции. Общеизвестным примером непозиционной системы является римская система счисления. Так, в числе МСХХХ11 (1132) значение цифры Х не изменяется и всегда равно десяти.

В ЭВМ применяются позиционные системы счисления, в основном двоичная система. Применение двоичной системы обусловлено, прежде всего, простотой представления в ЭВМ только двух цифр (0 и 1), которые она использует. Чтобы представить две цифры в ЭВМ, надо иметь элементы с двумя устойчивыми состояниями, одно из которых можно принять за 1, другое — за 0. Таких элементов достаточно много: намагниченный или ненамагниченный сердечник, открытый или закрытый транзистор и др.

Число в двоичной системе, так же как в десятичной, изображается последовательностью цифр. Например, десятичное число 13 изображается как последовательность двух цифр 1 и 3, это же число в двоичной системе — последовательность четырех цифр—1101: 1310^11012.

Так же как в десятичной, в двоичной системе есть понятие разряда числа. Если в десятичной — это разряд единиц, десятков, сотен и т. д. (т. е. разряд 10*\ 10^ 10^ и т. д.), то в двоичной — это разряд 2°, 2^, 2^, 2^ и т. д. Двоичный разряд принято называть битом.

Например, число 1101 в двоичной системе можно представить как 1-2^+1-2^+0-2^+1-2^.

Алгоритм перевода числа из двоичной системы счисления в десятичную достаточно простой. Напомним, что для такого перевода необходимо вычислить сумму вкладов битов по правилам десятичной системы счисления. Примеры: 101 = 2+0+1==

= 5; 110 010 = 2^+2^+0+0+2+0= 50.

Для перевода десятичной записи числа в двоичную существует несколько различных способов. Рассмотрим, например, следующий алгоритм (все действия выполняются по правилам десятичной системы счисления):

1. Разделим число, подлежащее преобразованию, на 2, остаток от деления может быть 1 или О, значение остатка присваивается младшему (самому первому) значащему биту искомой двоичной записи.

2. Полученное частное вновь делим на 2, остаток от деления равен значению следующего по старшинству бита.

3. Повторим п. 2 до тех пор, пока частное не станет меньше двух, частное от последнего деления равно значению старшего бита, остаток — второму по старшинству биту.

Графически работу этого алгоритма изобразим так:

27:2-13+(1) 13:2=6+(l) 6:2°3+(0)

3:2=l+(l)

ч I


1 10

Рассмотрим, как выполняются арифметические действия в двоичной системе. Для этого проведем анализ таблиц сложения и умножения в двоичной системе:

0+0=0, 0-0=0, 0+1 =1, 0 • 1=0, 1+1=10, 1 -1= 1. Следует обратить внимание на аналогию в правилах выполнения арифметических действий в двоичной и десятичных системах счисления: если при сложении двух двоичных чисел (точнее, представленных в двоичной системе счисления) сумма цифр окажется больше единицы, то возникает перенос в старший разряд; если уменьшаемая цифра меньше вычитаемой, то нужно сделать «заем» единицы в старшем разряде: * * ***

1)^10 II 101

_101 II

10

3)111 101 1100



4)

^111 110 1110

11100

101010


* — перенос (заем).

Анализируя примеры умножения в двоичной системе счисления, необходимо обратить внимание на одну важную особенность выполнения этой операции в данной системе. Так как очередная цифра множителя может быть только 1 или 0, то промежуточное произведение равно либо множимому, либо 0. Таким образом, операция умножения в двоичной системе фактически не производится: в качестве промежуточного произведения записывается либо множимое, либо 0, а затем промежуточные произведения суммируются. Иначе говоря, операция умножения заменяется последовательным сложением.

Рассмотрим теперь, как можно проводить вычитание. Для этого в компьютерах используется так называемый дополнительный код, позволяющий и эту операцию свести к сложению чисел.

Дополнительное число — это число, дополняющее данное до значения следующего старшего разряда. Например, дополнительным числом к 67 будет 33, так как 33 дополняет 67 до 100, к числу 8210 дополнительным будет 1790 (1790 +8210= 10 000).

Правила выполнения вычитания с дополнительным числом следующие. Чтобы вычесть число А из числа В, достаточно сложить В с дополнительным числом к А и отбросить перенос в соседний старший разряд. Например, чтобы вычесть 623 из 842, достаточно сложить 842 с 377; отбросив перенос, получим 219 (842 - 623 = 219).

Такой прием часто используется в практике вычислений. Его преимущество заключается в том, что вычитание производится только из круглого числа (при образовании дополнения). Еще большие преимущества в этом случае предоставляет двоичная система счисления. Дело в том, что дополнительное число в этой системе образуется очень просто: все цифры числа заменяются на противоположные (О на 1, а 1 на 0), после чего к числу прибавляется единица.

Приведем пример образования дополнительного числа в двоичной системе счисления. Изменим все цифры числа а = 11011 на противоположные: 00100—и прибавим единицу:

,00100


00101, тогда Одоп = 101. 101

Теперь рассмотрим, как выполняется вычитание с помощью дополнительного числа. Предположим, надо найти разность чисел а = 11110, Ь = 10011. Образуем число, дополнительное к Ь:

,01100

1101, тогда Ьдод-1101. Сложим а и &доп и отбросим перенос:



11110 1101

101011, получим 1011.

Это и будет разность чисел а и Ь, т.е. вычитание заменяется действием сложения с помощью дополнительного числа.

Таким образом, важнейшее преимущество двоичной арифметики заключается в том, что она позволяет все арифметические действия свести к одному — сложению, а это значительно упрощает устройство процессора ЭВМ.


Билет № 18

Этапы решения задач на компьютере.

Процесс исследования поведения какого-либо объекта или системы объектов на компьютере можно разбить на следующие этапы: построение содержательной модели объекта — построение математической модели объекта — построение информационной модели и алгоритма — кодирование алгоритма на языке программирования — компьютерный эксперимент.

Лучше всего рассмотреть процесс решения задачи на компьютере на конкретном примере. Пусть мы изучаем полет пушечного снаряда. Сначала мы строим содержательную модель, в которой рассматриваем движение снаряда в поле тяготения Земли. В этой модели мы рассматриваем только те параметры, которые характеризуют движение снаряда (скорость и координаты), и отвлекаемся от других параметров (температура снаряда, его цвет и т.д.). Затем строим математическую модель.

Математическая модель всегда основана на некоторых упрощениях, и поэтому этап построения математической модели весьма ответственный, неправильно выбранная модель с неизбежностью приводит к неверным результатам. Реально существующую физическую систему опишем с помощью идеализированной математической модели. Снаряд считаем материальной точкой, сопротивлением воздуха и размерами пушки пренебрегаем, ускорение свободного падения считаем постоянным g = 9,8 м/с2. Снаряд вылетает из пушки со скоростью V под углом  к горизонту.

Математическая модель описывается с помощью уравнений.

Пользуясь формулами из курса физики 9-го класса и учитывая, что по оси Х движение равномерное, а по оси Y — равноускоренное, можно получить формулы зависимости координат снаряда от времени:



х = (V cos a)t,

у = (V sin a)t – gt2/2.

Следующим этапом является построение информационной модели и алгоритма. Здесь необходимо четко зафиксировать, какие величины являются аргументами и какие — результатами алгоритма, а также определить тип этих величин. В нашем случае аргументами являются следующие переменные: угол вылета снаряд а А, его начальная скорость V и время полета Г. Результатом являются координаты Х и Y. Все они являются переменными

вещественного типа. Затем строится алгоритм, который позволяет определять значения результатов при различных значениях аргументов.

Построенный алгоритм записывается в какой-либо форме, например в виде блок-схемы:


Следующим этапом являются кодирование алгоритма на языке программирования. Закодируем наш алгоритм на языке программирования Бейсик.

10 RЕМ движение снаряда

20 INPUT V, А, Т 30 LET G = 9.8

40 LET X = V * COS (А)*Т

50 LET Y = V * SIN (А)*Т- G*T*T/2

60 PRINT X, Y

70 END

Теперь можно проводить компьютерный эксперимент, для этого необходимо загрузить программу в оперативную память компьютера и запустить на выполнение. Компьютерный эксперимент обязательно включает в себя анализ полученных результатов, на основании которого могут корректироваться все этапы решения задачи (математическая модель, алгоритм, программа).

В некоторых случаях можно избежать этапа построения алгоритма и создания программы, т. ^. можно воспользоваться одной из многих ранее созданных программ. Такие библиотеки алгоритмов (программ) существуют практически по всем областям науки и техники.
Технология гипертекста. Компьютерные справочники и энциклопедии.

Технология гипертекста структурирует текст документа, выделяя в нем слова-ссылки. При активизации ссылки (например, с помощью мыши) происходит переход на заданный в ссылке фрагмент текста. Любой текст можно преобразовать в гипертекст, выделив в нем слова-ссылки и зафиксировав для каждой ссылки точный адрес (метку) перехода.

Технология гипертекста, перенесенная в компыо-терные сети, позволила создать «Всемирную паутц-ну» в сети, Интернет. При активизации ссылки может произойти переход не только на любой фрагмент данного документа, но и на любой другой документ, находящийся на компьютере, подключенном к всемирной компьютерной сети Интернет. Активизируя ссылку в этом новом документе, можно' перейти на следующий документ, находящийся на другом континенте и т. д. Используя такие гиперссылки, можно путешествовать по «Всемирной па-утине».

Во «Всемирной паутине» основным и универсальным средством создания гипертекстовых документов стал язык HTML (Hyper Text Markup Language). Последняя версия текстового редактора Word (Word 97) позволяет теперь сохранять документы в формате НТМ, т. е. в формате гипертекста.

Ссылки в таких документах могут обеспечивать переход не только на определенные фрагменты текста, но и на графические файлы, аудио- и видеоклипы. Можно сказать, что с помощью языка HTIVIL можно реализовать технологию гипермедиа.

Для просмотра документов формата НТМ необходимы специальные программы-браузеры (Internet Explorer, Netscape Navigator). При инсталля13;ии

последней версии Internet Explorer 4.0 на компьютере с операционной системой Windows 95 этот бра-узер становится стандартным интерфейсом операционной системы.

Современные компьютерные справочники и энциклопедии являются документами, созданными с использованием технологии гипертекста. Большинство таких справочников и энциклопедий являются мультимедийными, т. е. реализованными с использованием технологии гипермедиа.


Билет № 19

Передача информации. Организация и структура телекоммуникационных компьютерных сетей.

С раннего детства мы знаем, что такое почта. Каждый из нас получал и отправлял письма и с их помощью обменивался информацией с друзьями, родственниками, учреждениями и организациями.

Почта, телефон, телеграф обеспечивают человеку связь, возможность общения на расстоянии. Их называют средствами телекоммуникации. Термин телекоммуникация состоит из двух слов теле (в переводе с греческого означает — «далеко») и коммуникация (в переводе с латыни — «сообщение, связь») и означает «связь, сообщение на расстоянии».

Если к вашему компьютеру подключить модем, т. е. устройство, позволяющее передавать информацию из компьютера через обыкновенную телефонную сеть, то вы сможете обмениваться сообщениями с любым человеком, чей компьютер также подключен к телефонной сети с помощью модема.

Модем (МОдулятор/ДЕМодулятор) предназначен для модуляции (преобразования) сигналов на выходе компьютера в сигналы, которые могут передаваться по телефонной сети, и демодуляции при приеме информации на компьютер.

Одной из важнейших характеристик модема является скорость передачи данных. Скорость передачи данных определяет, какое количество информации (бит) модем может передавать/принимать за единицу времени (секунду).

Наиболее распространенные модемы имеют скорости в 14 400 бит/с и 28 800 бит/с.

Чем выше скорость передачи данных, тем меньше времени потребуется модему на передачу или прием информации. Например, при пересылке файла размером 500 Кб модему со скоростью передачи данных 2400 бит/с понадобится около 36 минут, модему на 9600 бит/с — около 9 минут, модему на 14 400 бит/с — около 6 минут.

Определенная совокупность компьютеров, подключенных через модем к телефонной или иной коммуникационной среде, и таким образом имеющих возможность обмениваться между собой информацией, представляет собой компьютерную телекоммуникационную сеть.

Телекоммуникационная сеть состоит из компьютеров-серверов, передающих между собой информацию по определенным правилам (протоколам), а также отвечающих на обращения компьютеров-абонентов. Серверы организуют использование так называемых сетевых ресурсов (т. е. общей памяти компьютеров сети и каналов связи). Для связи серверов сети между собой может использоваться беспроводная спутниковая связь, специально выделенные телефонные линии (служат для прямого соединения абонентов друг с другом, набора номера не требуется), обычные коммутируемые телефонные линии (обеспечивают соединение с тем абонентом, номер которого набран). Для связи абонента с сервером сети, как правило, используется обычная коммутируемая телефонная линия.

Сервер сети, отвечая на телефонный звонок компьютера абонента, работает в одном из двух режимов: on-line (оператор на линии) или off-line (без оператора). Абонент, используя специальную коммуникационную программу и связываясь через свой компьютер с сервером, работающим в режиме on-line, получает возможность во время сеанса связи давать серверу определенные команды: просмотр разделов сервера, получение файлов с сервера на компьютер абонента, передача файлов с компьютера абонента на сервер. Связываясь с сервером, работающим в режиме off-line, абонент не имеет возможности непосредственно работать с сервером: коммуникационная программа абонента автоматически производит обмен информацией с сервером и прекращает сеанс связи. Иначе говоря, процесс ознакомления с полученной информацией в режиме off-line происходит уже тогда, когда связь с сервером уже прекращена. При обмене информацией между собой серверы сети используют режим offline.

Серверы сети обмениваются информацией между собой, поэтому абонент, подключенный к какому-либо одному серверу сети, имеет возможность обмениваться информацией с любым другим абонентом, подключенным к сети. Так как большинство сетей имеют между собой шлюзы (средства обмена информацией между серверами различных сетей) и тем самым входят в мировое содружество сетей, абонент одной какой-либо сети, в принципе получает возможность обмениваться информацией с любым другим абонентом, подключенным к любой другой сети.




Структура сети такова, что каждый сервер имеет по отношению к себе вышестоящий сервер, с которым и обменивается информацией. Так, серверы D и Е обмениваются информацией с серверами Б и С. Серверы А, В, С обмениваются информацией с сервером N. Сервер же N имеет шлюз в мировое содружество сетей, включая наиболее распространенные в России сети: Relcorn, GlasNet и др.
Информатизация общества. Основные этапы развития вычислительной техники.

Деятельность человека всегда связана с процессами получения, преобразования, накопления и передачи информации.

Важнейшим историческим этапом в развитии процесса обмена информацией, знаниями в человеческом обществе стало создание письменности. Язык и информация, отражаемая им, получил и материальную основу. Сначала это были камень, глина и дерево, затем папирус и, наконец, бумага. С изобретением письменности (около 5 тысяч лет назад) человечество получило возможность обмениваться информацией не только при непосредственном общении людей, но и записывать ее, хранить я передавать следующим поколениям.

Настоящей информационной революцией стало изобретение книгопечатания. Печатный станок, созданный И.Гутенбергом в Германии в 1440 году, открыл новую эру в обмене информацией между людьми. Знания, информация стали широко тиражируемыми, доступными многим людям. Это послужило мощным стимулом для увеличения грамотности населения, развития образования, науки, производства.

В результате научно-технического прогресса человечество создавало все новые средства и способы сбора, хранения, передачи информации. Но важнейшее в информационных процессах — обработка, целенаправленное преобразование информации осуществлялось до недавнего времени исключительно человеком.

Однако постоянное совершенствование техники, производства привело к резкому возрастанию информации, с которой приходится оперировать человеку в процессе его профессиональной деятельности. Например, современный авиадиспетчер должен каждую секунду знать положение многих самолетов, метеорологические условия, состояние взлетно-посадочных полос и оперативно принимать необходимые решения.

Развитие науки, образования обусловило быстрый рост объема информации, знаний человека. Если в начале прошлого века общая сумма человеческих знаний удваивалась приблизительно каждые пятьдесят лет, то в последующие годы — каждые пять лет.

Все это привело к тому, что человечество уже не справлялось с обработкой нарастающих объемов информации старыми методами и средствами.

Выходом из создавшейся ситуации стала автоматизация процессов обработки информации. Точнее — избавление человека от многих трудоемких, но не требующих творческого подхода видов деятельности, связанных с обработкой информации.

Первые попытки создания средств, инструментов для обработки информации связаны со стремлением упростить выполнение действий над числами. В Древнем Китае (около 4 тысяч лет назад) были изобретены счеты. Греки и римляне более двух тысячелетий назад начали использовать «абак» — счетную доску, на которой числа изображались определенным количеством камешков, а действия над числами — передвижением этих камешков.

В 1642 году известный французский физик и математик Б. Паскаль изобрел арифмометр — устройство для сложения и вычитания чисел, а двадцать лет спустя немецкий математик Г. Лейбниц сконструировал арифмометр, выполнявший все четыре арифметических действия.

Арифмометры несколько столетий верно служили людям, являясь незаменимым помощником человека в бухгалтерском учете, проведении научных расчетов и других областях его деятельности. Однако возможности арифмометров были ограничены — скорость вычислений на них была невелика, «память» арифмометра могла хранить лишь результат очередной арифметической операции.

В конце прошлого века в США проводилась первая перепись населения. В преддверии этой работы, связанной с учетом и обобщением огромного количества данных о многомиллионном населении, американский инженер Г. Холлерит сконструировал электромеханическое вычислительное устройство — табулятор. Табулятор в несколько раз превосходил арифмометр по скорости вычислений, имел память на перфокартах — картонных картах, на которых пробивались (перфорировались) специальные отверстия. Определенная система отверстий изображала число. Табуляторы нашли широкое применение и были предшественниками вычислительных машин нашего времени.

Первая электронная вычислительная машина «ЭНИАК» была создана в США в 1946 году. В нашей стране первая ЭВМ «МЭСМ-1» была разработана в 1951 году под руководством академика В. А. Лебедева.

Первые компьютеры были дорогостоящими, громоздкими устройствами, требующими для эксплуатации больших, специально оборудованных помещений. Их обслуживали десятки программистов и инженеров. Средства «общения» человека с машиной были весьма ограничены — все данные, вводимые в ЭВМ, набивались на перфокарты. Машинные языки были сложны, и ими владели лишь профессиональные программисты. «Машинное время» (т.е. время работы на ЭВМ) стоило дорого. В 50—60-е годы ЭВМ создавались для ускорения и автоматизации вычислительной работы. Область их применения ограничивалась, как правило, выполнением огромного объема однообразной вычислительной работы. Это имеет место, например, при вычислениях траектории движения спутников или начислениях зарплаты на большом предприятии.

Ситуация с использованием вычислительной техники стала принципиально меняться в 70-х годах. Во-первых, благодаря разработке новой технологии удалось в сотни раз уменьшить размеры и стоимость электронных элементов ЭВМ. Компьютер стал помещаться на письменном столе и предназначаться для использования одним человеком. Такие компьютеры получили наименование «персональных ЭВМ». Во-вторых, изменились средства общения человека с компьютером. Теперь человек может обращаться к ЭВМ с помощью клавиатуры (подобной клавиатуре пишущей машинки), а машина вести диалог с человеком и выдавать решения поставленных задач в виде текста или рисунков на телевизионном экране. В-третьих, получили дальнейшее развитие языки общения с компьютером.

В настоящее время они все более приближаются к естественному языку человека и поэтому овладение ими стало доступно каждому человеку за достаточно небольшое время. Кроме того, профессиональными программистами создано большое количество прикладных программ для решения на компьютерах типовых задач, часто встречающихся во многих областях деятельности человека. Наборы таких прикладных программ для типовых задач по какой-либо отрасли позволяют воспользоваться компьютером для их решения специалисту, не владеющему программированием. В-четвертых, значительно расширилась сфера применения компьютеров. Если в первые годы своего существования ЭВМ использовались в основном для вычислений, то в настоящее время компьютеры широко применяются для обработки не только числовой, но и других видов информации.

Каждый этап развития компьютеров определялся совокупностью элементов, из которых строились компьютеры, — элементной базой, а также уровнем развития их программного обеспечения.

С изменением элементной базы ЭВМ значительно изменялись характеристики, внешний вид и возможности компьютеров. Каждые 10—12 лет происходил резкий скачок в конструкции и способах производства ЭВМ.

Именно поэтому принято говорить о поколениях ЭВМ, сменявших друг друга в ходе развития вычислительной техники.

Естественно, что смена поколений заключалась не только в обновлении элементной базы. С каждым новым поколением в практику применения ЭВМ входили новые способы решения задач и новые компоненты программного обеспечения.

В ЭВМ первого поколения элементы электронных схем изготовлялись на базе вакуумных электронных ламп. Машины первого поколения занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии.

Появление ЭВМ второго поколения стало возможным благодаря изобретению транзисторов. Резкое уменьшение размеров транзисторов по сравнению с радиолампами позволило делать блоки ЭВМ в виде так называемых печатных плат. Использование транзисторов и печатных плат позволило значительно уменьшить размеры ЭВМ и потребление энергии.

Основу ЭВМ третьего поколения составляют так называемые интегральные схемы. Благодаря изобретению интегральных схем резко повысился уровень надежности электронных схем при значительном падении их стоимости благодаря уменьшению размеров и автоматизации их проектирования и производства. В ЭВМ третьего поколения применялись интегральные схемы, содержащие более тысячи элементов на одном кристалле.

ЭВМ четвертого поколения используют большие интегральные схемы (БИС), в которых количество элементов на кристалле кремния равно десяткам тысяч. Процессор ЭВМ стал целиком размещаться на одном кристалле кремния. Такие процессоры получили название микропроцессоров. В результате на одной плате оказалось возможным разместить электронные схемы всех устройств ЭВМ, а саму ЭВМ, которая еще двадцать лет назад занимала большой зал, сделать по габаритам и по стоимости доступной для индивидуального применения на рабочем месте пользователя. Так появились персональные ЭВМ.

Сегодня информатика и вычислительная техника проникли во многие сферы деятельности человека, завтра станут неотъемлемой частью практически всех профессий, прочно войдут в наш быт, образование, культуру. Именно поэтому знание информатики, умение использовать компьютер становится компонентом общего образования человека в современном обществе, а компьютерная грамотность — второй грамотностью человека.


Билет № 20

Услуги компьютерных сетей.

Основной услугой компьютерных сетей является электронная почта. Этот режим работы компьютерных сетей назван так, потому что обеспечивает доставку электронных писем от одного абонента к другому. Электронное письмо— обычный текстовый файл, снабженный несколькими служебными строками (конвертом). Электронная почта позволяет пересылать не только тексты, но при необходимости программы, картинки и другую информацию. Электронная почта — быстрый и достаточно дешевый вид связи. В любую точку мира электронное письмо идет, как правило, не более 4 часов.

Для каждого абонента сети на одном из компьютеров выделяется область памяти, так называемый электронный почтовый ящик. Все письма, поступающие на определенный почтовый адрес, записываются в соответствующий почтовый ящик. Чтобы использовать этот почтовый ящик (получать из него информацию), абонент должен передать на сетевой компьютер свой почтовый адрес и определенный пароль, обеспечивающий доступ к информации только тому пользователю, который знает этот пароль.

Для того чтобы электронное письмо дошло до адресата, необходимо, чтобы оно было оформлено в соответствии с международным стандартом и имело почтовый электронный адрес.

Почтовый электронный адрес может иметь разные форматы. Наиболее широко распространена схема формирования адреса, используемая, например, в сети Internet.

По аналогии с адресом, который мы указываем на конверте обычного письма, электронный адрес содержит два основных компонента:



идентификатор абонента (аналогично строке КОМУ: на почтовом конверте);

координаты абонента, указывающие его местонахождение (аналогично строке КУДА: дом, улица, город, страна).

Для того чтобы отделить идентификатор абонента от его почтовых координат, используется значок @. Например: kuz@tit-bit.msk.ru

В рассматриваемом примере kuz — идентификатор абонента, отражающий обычно начальные буквы его фамилии или имени. Далее справа от знака @ указываются почтовые координаты абонента, которые описывают его местонахождение. Эти координаты называют доменом. Составные части домена разделяются точками. Крайне правая часть домена, как правило, обозначает код страны адресата. Код страны определяется международным стандартом ISO. В нашем случае ru — код России.

Следующая часть домена — msk — указывает код города — Москвы.

Наконец, третья часть домена обозначает имя машины (tit-bit), которой пользуется данный абонент.

Использование компьютерных телекоммуникаций дает возможность не просто передавать сообщения абонентам сети, но еще и записывать, хранить и читать информацию, ранее оставленную там другим абонентом. Эти возможности привели к появлению так называемых электронных досок объявлений (ЭДО). Они получили такое название по аналогии их функций с обычными «досками объявлений» на стене школы, учреждения, в журнале или газете.

Для организации электронной доски объявлений используется мощный компьютер с большим объемом дисковой и оперативной памяти. Б ней хранятся сообщения, полученные от пользовате-

лей данной электронной доски объявлений. К этому компьютеру подключается несколько отдельных телефонных каналов, что дает возможность использования электронной доски объявлений одновременно большим числом пользователей.

Абонент, обращающийся к ЭДО, входит в систему меню, предлагаемую ЭДО. Он может просмотреть меню, выбрать интересующий его раздел, переписать информацию из ЭДО в свой компьютер, передать информацию из своего компьютера в ЭДО или оставить сообщение для конкретного абонента.

Дальнейшее развитие идеи электронного обмена информацией — это телеконференции.

Телеконференция — обмен электронными сообщениями между абонентами по определенной тематике. Сообщение, посвященное определенной теме, попадает ко всем абонентам, подключенным к данной конференции. Существует огромное количество телеконференций, посвященных совершенно разнообразным темам: образованию, музыке, искусству, программированию, бизнесу и т. д.

Телеконференции по своей организации и функционированию во многом близки к ЭДО. но имеют и отличие.

Используя режим телеконференций, абонент может непосредственно не обращаться на ЭДО. Ему необходимо заранее подготовить сообщение, которое он хотел бы поместить в тот или иной раздел, и указать, содержимое каких разделов его интересует. Связавшись с сервером сети, абонент передает все функции организации работы компьютеру. Компьютер передаст все сообщения, предназначенные для отправки, и получит все содержимое из разделов, которые были выбраны абонентом.

Благодаря совмещению технологий баз данных и компьютерных телекоммуникаций стало возможным использовать так называемые распределенные базы данных. Огромные массивы информации, накопленные человечеством, распределены по различным регионам, странам, городам, где хранятся в библиотеках, архивах, информационных центрах.

Обычно все крупные библиотеки, музеи, архивы и другие подобные организации имеют свои компьютерные базы данных, в которых сосредоточена хранимая в этих учреждениях информация. Компьютерные сети позволяют осуществить доступ к любой базе данных, которая подключена к сети. Это избавляет пользователей сети от необходимости держать у себя гигантскую библиотеку и дает возможность существенно повысить эффективность работы по поиску необходимой информации.

Если вы являетесь пользователем компьютерной сети, то можете сделать запрос в соответствующие базы данных и получить по сети электронную копию необходимой книги, статьи, архивного материала, увидеть, какие картины и другие экспонаты находятся в данном музее и т. д. Вы можете также послать свою информацию в любую базу данных.



Двоичное кодирование текста, изображения и звука.

Компьютер может обрабатывать числовую, текстовую, графическую видео- и звуковую информацию. Возникает вопрос: «Как, каким образом процессор обрабатывает столь различающиеся по восприятию человеком виды информации?»




Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8


База данных защищена авторским правом ©nethash.ru 2017
обратиться к администрации

войти | регистрация
    Главная страница


загрузить материал